UniLink WebToAppバナー画像

方程式の両辺文字倍について

クリップ(0) コメント(1)
9/29 14:04
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

みかん

高卒 神奈川県 東北大学志望

方程式において、例えば、 2次方程式 t2乗-2t-8=0 の両辺にtをかけたらt3乗-2t2乗-8t=0 となり、この解にはダミー解 t=0が含まれますが、 t-8/t=2 の両辺にtをかけて、 t2乗-2t-8=0 としても、この解にダミー解は含まれません。 これはどうしてでしょうか。 後者では分母のtが消えて整数がでてくるのに対し、前者では元の式の両辺にtをかけることで、t(t2乗-2t-8)=0 となり、新たなダミー解0が導かれるというのはわかるのですが、元の式の文字同士の次数の開きは同じなのに、(前者では0乗〜2乗、後者では-1〜1乗)と思うと、なんとなく腑に落ちません。 初歩的な質問で申し訳ありません(T_T) 回答よろしくお願い致します。(.. )

回答

くまぷー

九州大学医学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは。質問の内容を100%理解できたわけではありませんが、1つだけ条件?的なことを書きますね。説明になってないかもしれませんが、よろしくお願いします。 そもそも、t-8/t=2の方程式において、初期条件として、t≠0が条件として付いていることに気をつけてください。なので、t倍しようが、tの2乗倍しようが、そもそもにt≠0なので、t=0という解自体がこの問題には存在しないことになります。 もし、質問の回答になっていなかったら、メッセージでお願いします (T ^ T)

くまぷー

九州大学医学部

75
ファン
25.2
平均クリップ
4.8
平均評価

プロフィール

九州大学医学部医学科 現役合格 勉強のことお助けできることはぜひやらせてください!極力、わかりやすいアドバイスを目指します! 「本当に出来る人は、環境に文句を言わない」

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

みかんのプロフィール画像
みかん
9/30 11:23
なるほど!!! 悩みすぎて肝心のそこを忘れていました。😭 もやもやがすっきりして本当に助かりました。ありがとうございました。

よく一緒に読まれている人気の回答

隣接3項間漸化式
こんにちは、名古屋大学医学部医学科のメイメイといいます。 (an-an-1)=bnとするとb1は求められないですね。 (an+1)-(an)=2[(an)-(an-1)] が出てきているはずですが、 n-1の項があり基本的にn≧2で考えています。 これをn≧1に直してみると (an+2)-(an+1)=2[(an+1)-(an)] となります。 単純にnの部分を1ずつずらしただけです。 この状態で(an+1)-(an)=bn と置いてみましょう。 b1が求められるはずです。(ちなみにb2は必要ないです。) つまり(bn+1)=2(bn)、b1=(a2)-(a1)=8の等比数列に帰着しますね。 これを解くと、bn=8・2^n-1=2^n+2となります。(2^n-1は2のn-1乗という意味です。) すなわち、(an+1)-(an)=2^n+2 両辺を2^n+1で割ると <(an+1)/2^n+1>-(1/2)<(an)/2^n>=2 となります。 (an)/2^nをcnとすると、(cn+1)=(1/2)(cn)+2 これを変形して、(cn+1)-4=(1/2)<(cn)-4> つまり(cn)-4=(-7/2)・(1/2)^n-1=(-7)・(1/2)^n よってcn=4-7・(1/2)^n この両辺に2^nをかけてan=4・2^n-7 (n≧1) となります。 分かりにくくてすいません!
名古屋大学医学部 メイメイ
2
3
理系数学
理系数学カテゴリの画像
この数学の問題を教えて下さい🙇
自然数を8で割った余りは0〜7になるのは理解できると思います。 そこで、nを自然数とすると、 8で割った余りが 0→8n 1→8n 1 2→8n 2 3→8n 3 4→8n 4 5→8n 5 6→8n 6 7→8n 7 とすることですべての自然数を表すことができます。問題で聞いているのは平方数ということなので、それぞれを2乗すると、 0→64n^2=8×8n^2 1→64n^2 16n 1=8(8n^2 2n) 1 2→64n^2 32n 4=8(8n^2 4n) 4 3→64n^2 48n 9=8(8n^2 6n 1) 1 4→64n^2 64n 16=8(8n^2 8n 2) 5→64n^2 80n 25=8(8n^2 10n 3) 1 6→64n^2 96n 36=8(8n^2 12n 4) 4 7→64n^2 112n 49=8(8n^2 14n 6) 1 となります。 すべて(8n ○)^2という式になる以上、n^2とnの係数は8の倍数になるので、自然数部分である余りの2乗部分を8で割った時の余りが平方数の余りになります。 長くなってすみません。わからなかったらまた質問してください。
東北大学経済学部 りーーー
0
0
理系数学
理系数学カテゴリの画像
微分の応用
X(t)に関して 速度dx/dt=vとする。…① すると、加速度d^2x/dt^2=d/dt•(dx/dt)=dv/dt …② となる。 次にt(x)に関して dt/dx=1/(dx/dt)=(①を用いて)=1/v…③であり、 d^2t/dx^2=d/dx•(dt/dx)=(③を用いて)=d/dx•(1/v) (これは合成関数の微分に相当するので) =-1/v^2•dv/dx=(vの変数としてのxはかなり扱いづらいので、tに変数変換して)=-1/v^2•dv/dt•dt/dx となる。②、③を用いて変形すると、 d^2x/dt^2=-v^3•d^2t/dx^2 となる。あとは①を代入して、答えは {}=-(dx/dt)^3となります。 あってるかな、、?なんにせよこうゆうのにチャレンジしてみる姿勢は素晴らしいと思います。
東京大学理科一類 Atom
2
2
理系数学
理系数学カテゴリの画像
形式的に覚えてしまう
数学と化学に関しては私も現役の時は心当たりがあります。特に数学はセンス的な要素が強いと思っていたので、解ける解けないの差が激しかったです。 さて、少しひねった問題が来ると解けないのが悩みということですが、まず、最低限の勉強ができていることが大事です。おそらくそこらへんはテスト期間で補っているので大丈夫かと思います。 その中で同じような問題で少しひねっている問題というのはどうすればいいかわからないと思うかもしれませんが、解き方としてはひねる前の解き方と同じようなのに気づくことはできているでしょうか?そのような問題の模範解答をじっくり吟味しているでしょうか?その時解けなかった問題はしょうがないですが、そのあとのフィードバックが大事です。そして、この解法やったことがあるなと感じることが大切です。 具体的に述べるのは難しいですが、例えば二次方程式の2解が正の値をとるための条件は f(0)>0 軸>0 判別式≧0 で必要十分ですよね。これは大丈夫でしょうか? これの少しひねった問題が例えば二次方程式の解が0<x<1の範囲で持つ条件はどうでしょうか? これは場合分けが必要ですが、そのうち2解がともに0<x<1の範囲の時はどのような条件かというと f(0)>0 f(1)>0 0<軸<1 判別式≧0 で必要十分です。これと先ほどの上の条件と比較すると同じような感じですよね?つまり端点のみに具体的な数字の条件があるときにこのような条件で進めていくのがセオリーです。 上の解法を知識ゼロから解けと言われたら厳しいものがあるかと思いますが、一通り通っていることなら問題を見たときに「あっ、この問題はこの解法かな?」と瞬時に判断できるはずです。その感覚が大事です。「あー、これどうすればいいんだっけ…?」みたいな感じになっているのは良くないです。 これは勉強する時は問題を解き始める前に一瞬立ち止まって考えください。これを意識するしないとでは雲泥の差です。これは私自身、現役の時には気づかなかったことですが、浪人してからはこのことを意識するだけで、解ける問題のレパートリーが増えました。 闇雲にただ問題をこなすだけなら、むしろその場しのぎになってしまいます。それなら、数学の問題とかは時間がないのなら問題をみてこのような解法でいけばいいかなと思えるなら解かなくていいです。 要は、解き方に“意識“して問題演習を行ってください。時間のかける方はこっちの方です。 模試の前とかは、全国模試であれば定期テストなどでできなかった問題の教科書レベルの類題を確認する感じでいいと思います。高校生は部活等で時間がないと思われますので。
慶應義塾大学理工学部 シュンペーター
21
0
理系数学
理系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
35
8
文系数学
文系数学カテゴリの画像
独自の定義、規則
 こういった問題独自の定義は、だいたい文字を含んでいることが多いです。例えば、 ・「nを正の整数とし、3^nを10で割った余りをanとする。」(東京大2016文系) ・「正の整数nの各位の数の和をS(n)で表す。」(一橋大2018) ・「nを2以上の整数とする。金貨と銀貨を含むn枚の硬貨を同時に投げ、裏が出た金貨は取り去り、取り去った金貨と同じ枚数の銀貨を加えるという試行の繰り返しを考える。初めはn枚すべてが金貨であり、n枚すべてが銀貨になった後も試行を繰り返す。k回目の試行の直後に、n枚の硬貨の中に金貨がj枚だけ残る確率をPk(j)(0≦j≦n)で表す。」(東北大2019文系) のように。あなたが挙げて下さった例でもそうですね。  ご存知のように、数学で文字が使われるのはそこに入る値が不特定であるときなので、逆にいえば、自分で具体的な値を代入して実験してみれば良いわけです。k-連続和でいえば、m=1、k=2とすると、3=1+2という等式になり、3は2-連続和であることになります(相談文のk+1はおそらくkー1の間違いですね。でなければ、nはk+2個の連続する自然数の和になってしまうので)。ちゃんと、n(3)がk(2)個の連続する自然数(1→2)の和であるという定義に則ってますね。2019年文系の確率も、例えばk=1を代入してみると、P1(j)は「n枚の金貨を同時に投げ、そのうちj枚が表で他が裏になる確率」のことを言っているのだとわかります(ちなみにこれは小問⑴)。反復試行の確率を考えればすぐ解けますね。すると、次はk=2、その次はk=3、と実験数をどんどん増やしていけば、Pk(j)の内容もいずれわかるはずです。試行の手順上、残るj枚は必ず全ての試行において表でなければならず、他方それ以外の金貨はすべて、k回のうちのどこかで裏が出ればいい(全て表で残る場合の余事象)わけですから、「n枚の金貨のうち、k回の試行の直後に残るべきj枚はk回とも全て表が出て、それ以外のn−j枚はk回の試行で少なくとも一回裏が出る確率」とわかります。ここまで日本語として簡略化できれば、Pk(j)(特に、k≧2)の値もそこまで苦戦せずに出せそうですね(ちなみにこれは小問⑵)。  このように、なるべく簡単な値から代入して実験を繰り返すことで、独自の定義が何を言っているのかは帰納的に理解できることが多いです。文字が多かったり、分かりにくい表現だったりして、複雑で難しく感じる定義が出てきたら、まずは実験してみることを心がけると良いと思います。文系の問題ですが、もしまだ解いてない場合はネタバレになってしまい申し訳ございません。
北海道大学法学部 たけなわ
3
1
理系数学
理系数学カテゴリの画像
センター数学
センター試験の集合は、実数の集合を扱うことが多いため、数直線上に図示するのが有効なことが多いです。 目盛の間隔を正確に図示する必要はなく、それぞれの端の大小と、黒丸白丸があっているかが重要です。(黒丸の場合はその点を含む、白丸の時はその点を含まないことを表します。不等号に=が入っているかどうかの違いとも言えます。) 例えば、 p: x>1 q:x≦2 のように与えられていた時、右向きの数直線上に左から1と2の点を書きます。 pについては、x>1(つまり「xは1より大きい」)であることから、先ほど書いた1の点に白丸を書き、そこから右上がりに少し直線を書き、そこから右向きに直線を伸ばします。新幹線のような形になります。この形は、1の点を含まないことを表すもので、白丸と同じ意味ですが、ぱっと見で分かるように両方使います。また、この線がpであることをどこかに書いておいてください。 qについては、x≦2(つまり「xは2以下」)であるので、2の点に黒丸を書き、そこから真下に少し直線を書き、左向きの直線を伸ばします。こちらは、電車のような形になります。この形は、2を含むことを表すもので、黒丸と同じ意味です。こちらの線にも、qであることを書いておいてください。 このように、範囲を一つ一つ図示していくと、次のようになります。 _______________ p / 2 ---------○-----●------->x 1 | q --------------- これを見れば、「pかつq」や、「pまたはq」「p⇒q は真か偽か」はすぐに分かるはずです。たとえば「pかつq」なら、pとqが重なっているところなので、1<x≦2になります。「pまたはq」ならば、pとqの少なくともどちらかがある範囲なので、xは全ての実数になりますね。「p⇒qは真か偽か」については、pの中にqが含まれていないので、pならばqとはいえません。よって、偽となります。 上図の縦棒や斜め棒の長さを条件ごとに変えれば、一つの数直線にもっとたくさんの条件を書き込めます。そのようにして、一つの数直線に与えられた条件全てについて書いておくと、かなり簡単になると思います。 また、「(pかつq)または(rの否定)」といわれたときは、pとqとrとは別に、「pかつq」や「rの否定」についても書くと、分かりやすくなります。 加えて、たまに、条件式をそのまま使うと面倒くさいことがあります。そういう場合は、対偶を取るのが良いです。(そこまで多くはないし、絶対になければ解けないわけではないため、これ以後ついては忘れても大丈夫です) 「p⇒q」と、「(qの否定)⇒(pの否定)」(対偶)は同じ意味です。また、[(aかつb)の否定]と[(aの否定)または(bの否定)]は同じ意味です(ド・モルガンの法則)。これらをつかうことで、 ・「または」を「かつ」に変換できる ・aやbの代わりにaの否定やbの否定を使える という利点があります。このような利点が使えそう!と思ったら使ってみてください(とりあえずわかんなかったら対偶とってみる、っていうのも一つの手ではあります)。 ※(rの否定)などは、本来はrの上に横棒を書いて表します 至らないところもあったかもしれませんが、貴方の合格を願っています。それでは。
早稲田大学先進理工学部 ROX
19
0
文系数学
文系数学カテゴリの画像
数ⅲで積分 焦ってます。
まずは基本的な計算が出来るようになりましょう。 その為にも教科書の問題で良いので、部分積分や置換積分の章の問題をこなして「部分積分と置換積分のどちらをすれば良いか分かれば計算ができる」という状態にします。 そしてここからが多くの人が悩む、どこをどう置換するのか?いつ部分積分や置換積分をするのか?という問題です。 基本的に置換積分や部分積分の目的は複雑な関数の積分を、既知の積分に置き換えるor変形するという事です。上の計算問題をこなしていく内に、どんな形の積分なら計算できるか感覚的に分かると思います。 そのように解ける形の積分を自分なりに頭の中で整理してどの形に変形できるかな?と考えます。 基本的には難しい所や邪魔なところを置換するorxのべき乗やlogを消したいから部分積分する…といった理解でも正直問題はないです。中には双曲線関数など数学的に重要な例や深い視点に立てば自然な置換も存在しますが、これは誘導が着くはずなのであまり気にしなくて良いです。 纏めると、まずはきちんと計算が出来るようになる事と計算が出来る積分形を自分なりにしっかり理解する事が肝要だと思います。 拙い文章ですが、役に立てれば幸いです。
九州大学理学部 A.C
7
0
理系数学
理系数学カテゴリの画像
ひらめきが足りない
受験数学にひらめきは全く必要ありません。 実際、数学者と数学の得意な高校生が、受験数学で勝負すると高校生が圧勝します(実話です)。一体何が、高校生を勝たせるのだと思いますか? 受験数学には、確かに、「ひらめきのようなもの」を要求する場面があります。特に整数問題などで顕著ですが。しかし、ほとんどの問題は、今まで身につけてきた解法で対応できてしまうんですね。 例えばですが、多変数関数 f(x,y)の最大値、最小値を求めよという問題が出たとします。(f(x,y)の中身は、例えば、x^2 3xy y^2などですね。ここではそれは本質ではないのでスルーします。)その時、方針が何通りかあるんですが、それを列挙できますか? あるいは、図形問題に対して、どのようなアプローチを考えるべきか説明できますか? (答えはどちらも回答の最後に載せますね) もし1つも分からない場合や、何個かしか挙げられない時は、少し補充的な勉強をする必要があります。 問題ごとに、それを解くための最適な方針がありますね。それをメモ程度で十分なので、どんどんまとめていってください。すると、多種多様に見える問題も、スタートは必ず同じことをしていたり、何個かのパターンの方針しか使っていなかったりします。本当はこういうことを分かっていくのは、問題演習を通してだんだん培っていくべきものなんでしょうが、99%の人は出来ないでしょう。僕も全然出来ませんでしたし。 なんにせよ、こういう「解法の整理」をしていくと、全く手が付かない問題はほとんどなくなってきます。途中までは行けるようになるんですね。そして、「ひらめき」は大抵こういう場面で使うものですね。例えば最後の最後に有名不等式を使ったりなどでしょうか。しかし、これすらも、方針としてカテゴライズすることが可能です。いわゆる純粋なひらめきは、受験数学においてはあり得ないといって良いでしょう。大抵、「閃かない」時は、解法が浮かばない時です。かなり具体的な問題に帰着できましたね。 僕は、ノートの見開き1ページに、この問題が来たら、この方針がよく登場する!というフローチャートのようなものを作っていましたね。頭の中が整理されていく感じがして楽しいですよ。 ちなみに、基礎ができていないということは、多少あるにせよ直接的な原因ではなく、いくら固めたところで、成果が微々たるものしか出ないので、気をつけましょう。青チャート、フォーカスゴールド、どちらも持っている時点でフル装備なので、多少の復習はもちろん必要といえども、頑張る必要はありません。 さて、先ほどの問題、わからずじまいは良くないですから簡単に 多変数関数の最大最小問題: ・等式があればxかyに代入してそれを消去する(いわゆる文字消去) ・xかyのどちらかを定数とみなし、ただの1変数関数とみなして考える(いわゆる文字固定) ・有名不等式の利用(相加相乗平均の関係、コーシーシュワルツの不等式、三角不等式など) ・逆像法 ・線型計画法 ・グラフを書いて考える Etc. 図形問題のアプローチ ・まずは初等幾何で解けないか考える。 ・次に、位置ベクトルを導入することで、内積などを利用して解けないか考える。 ・もし対称性の高い図形だったら、座標平面を設定するのも考える。 僕がこの解法整理についての対策を編み出し、始めたのは12月の半ばです。今なら相当早いタイミングから対策できますから、ぜひ過去問での得点をぐんぐん挙げて、自信をつけていってほしいと思います。 では、有意義な秋をお過ごしください!
東京大学理科一類 ひこにー
151
2
文系数学
文系数学カテゴリの画像
記述模試で点を落とす 英文和訳と説明問題の対策
あるぶるさん、こんにちは。 今回は英語の和訳問題、説明問題の大きく2つに分けて解説していければと思います。 ◎和訳問題 なぜいつも和訳で減点されてしまうのでしょうか。逆に、"減点されない"和訳とはなんでしょうか?まず初めに、"減点されない"和訳というのを説明したいと思います。 ★"減点されない"和訳 ①原文と違わない(構文把握、単語) ②原文なしで分かる(文脈) ③日本語として正しい ①、減点の多くはここです。構文がとれてなかった、単語の訳を間違えた、などなどキリがないです。単語を間違えれば当然減点されますし、構文も取れていなければ減点されます。 ②、単語、構文は分かっているのに点がこない。それは文脈がとれていないからです。試しに、次の一文を訳してみてください。 I don't like him because he is rich. どのように訳したでしょうか。 ・彼は金持ちなので私は彼が好きではない このように訳しましたか?これは正解です。ですがこのようにも訳せるのではないでしょうか。 ・彼が彼を好きなのは彼が金持ちだからではない これも正解です。これは所謂"否定の範囲"というやつですが、何が言いたいかというと文脈で英語の訳はいくらでも変化するということです。これだけでなく代名詞が何を指すのか、なども意識しなければ当然減点対象です。 ③、傍線部中に"black-and-white television"と出てきたらどう訳しますか?当然、"白黒テレビ"と訳すと思います。しかし英語を直訳すれは"黒白テレビ"のはずです。これが"日本語として正しい"ということです。 英語の訳に意訳、直訳などというものはなくて、すべては上の3点です。上の3点がクリアされていれば減点されることは絶対にありません。とくに②、③は以後気をつけてみてください。 ◎説明問題 説明問題については、回答作成の手順を解説したいと思います。 ★説明問題の回答作成手順 ①該当箇所の発見 ②字数調整 ③文末表現チェック ①、説明問題で点がこない大半はここが間違えています。説明問題の基本のキは該当箇所の発見です。どの模試の解説を読んでも、どの過去問を解いても、ほぼ必ず回答の根拠となる"該当箇所"があります。ここを外せば点はまず来ません。ですが心配することはありません。逆に言えば、該当箇所さえ発見してしまえばあとはそこをうまく訳すだけです。見つけた瞬間、"しめた!"と思ってください。 ②、多くの説明問題にはこんな条件がついているのではないでしょうか。"𓏸𓏸字以内で" "𓏸𓏸字程度で" これらの条件は、"ヒント"です。問題作成者がこのくらいかな、という目安をつけてくれているということです。これは該当箇所の発見に大きく役立ちます。また、"𓏸𓏸字以内"とは"-1割~ちょうど"、"𓏸𓏸字程度"とは"±1割"が一般的です。 ③、ここで減点されてはもったいない。 「~な理由はなぜか」ときたら「~だから。」と書かなければいけないし、「~とはどういうことか」ときたら「~ということ。/~こと。」と書かなければいけません。最後に必ず文末表現のチェックを行いましょう。 和訳、説明問題はこれさえ押さえれば必ず得点源になります。ぜひ今回紹介したことを頭に入れたうえで模試などの解き直しを再度してみてください。こうすればよいのか、というのが分かるはずです。 応援してます、頑張ってください。
一橋大学商学部 yoko
4
0
英語
英語カテゴリの画像