UniLink WebToAppバナー画像

微分の応用

クリップ(2) コメント(0)
8/6 7:30
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

はる

高3 大阪府 大阪大学工学部(61)志望

点Pがx軸上を運動している。時間を測りながら、Pの位置xを観測すると位置は時間の関数としてx=x(t)とかける。ところで逆に位置xを基にそこにくるときの時間を観測すると、時間は位置の関数としてt=t(x)とかける。このようにtとxを入れ替えて考える。そこでtをxで微分した式として加速度の式を書き直せば、d^2x/dt^2={ }d^2t/dx^2とかける。 { }に入る式を答える問題です。高校の先生から出されたチャレンジ問題です。時間をかけましたが、わからなかったので教えてくださるとありがたいです。

回答

回答者のプロフィール画像

Atom

東京大学理科一類

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
X(t)に関して 速度dx/dt=vとする。…① すると、加速度d^2x/dt^2=d/dt•(dx/dt)=dv/dt …② となる。 次にt(x)に関して dt/dx=1/(dx/dt)=(①を用いて)=1/v…③であり、 d^2t/dx^2=d/dx•(dt/dx)=(③を用いて)=d/dx•(1/v) (これは合成関数の微分に相当するので) =-1/v^2•dv/dx=(vの変数としてのxはかなり扱いづらいので、tに変数変換して)=-1/v^2•dv/dt•dt/dx となる。②、③を用いて変形すると、 d^2x/dt^2=-v^3•d^2t/dx^2 となる。あとは①を代入して、答えは {}=-(dx/dt)^3となります。 あってるかな、、?なんにせよこうゆうのにチャレンジしてみる姿勢は素晴らしいと思います。
回答者のプロフィール画像

Atom

東京大学理科一類

4
ファン
5
平均クリップ
4.6
平均評価

プロフィール

現役 理科一類一年 合格: 理一、慶応学問B、早稲田先進理工 出身:私立中高一貫進学校 高校の部活:サッカー部、軽音部 塾:数学、物理、英語 趣味:けーぽ なんか始めたばっかでよくわかんないけど力になれたら嬉しいです!がんばってね!!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

電磁気の理解の仕方(あと重心速度について)
初めまして ①電磁気の原理原則の深い理解についてですが、ある程度慣れているのであれば駿台文庫の【新物理入門】を読みまくればいいと思います こちらは受験参考書でありながら高校物理の大学物理の架け橋(大学初年度に習う物理に片足突っ込んでる)となっており、高校物理で曖昧になっているところを、高校数学でわかる範囲で説明しています 電磁気の根底の原理原則理解には、大学初年度での数学知識がないと説明が非常にややこしく、受験勉強もうしなくてももう受かるわっていうほどのレベルでない限り今はやらないほうがいいので、新物理入門に書いてあるレベルの理解を目標とするのが良いでしょう ②部分的な説明になってますがそうですね 2物体1,2に対して 物体m1にかかる外力をF1、物体m2のほうをF2(どちらもベクトル)とすると、それぞれの運方の和よりd(m1v1 m2v2)/dt=F1 F2 (vもベクトル) 運動量の和をp(ベクトル和)とすると、dp/dt=F1 F2…①となりますね また、重心の座標はrG=m1r1 m2r2/m1 m2 (rは位置ベクトル)なので、sinさんのいうとおり微分して vG=m1v1 m2v2/m1 m2=p/m1 m2…② (重心速度) ここで①,②より、外力が存在しないとき、p=cost(定数)となり運動量が保存(これが運動量保存則の原理) よってvGもcostなんで、速度一定ということですね この説明も新物理入門に載っているので、ぜひ書店で見ていただいて、気に入れば購入をお勧めします💪 残りの受験勉強も頑張ってください🙏
早稲田大学先進理工学部 エムジェー
3
0
物理
物理カテゴリの画像
理科科目を固めるには
こんにちは、理工学部で主に物理学を専門に勉強している者です。 もし化学が安定しているようであれば、駿台文庫の「原点からの化学」シリーズはおすすめできます。それなりの化学の知識があれば、その知識をさらに掘り下げつつ、文字通り「原点から」展開されゆく化学体系に感動するでしょう。特に「化学の計算」、「無機化学」に関しては、問題を解くにあたってすぐに勉強効果が発揮されると思います。 それでは物理に関して、おすすめの参考書などを紹介すると同時に、演習するにあたって心がけると良いことを詳しく解説させて頂きます。 今でこそ物理学を専門にする程度には物理に詳しいものの、自分も物理には苦労した身です。かなり説明が長くなってしまいましたが、自分の物理の勉強経験を踏まえ、しっかりと書きましたので最後まで読んでいただけると幸いです。 すでに教科書レベルの物理を勉強されたならご存知の通り、物理学は森羅万象をなるべく簡潔な形式で記述しよう、という学問です。例えばすでに勉強されたであろう力学であれば、ニュートンの運動の三法則がこの簡潔な記述に当たります。しかし、 「加速度の大きさは,力の大きさに比例し,質量に反比例して, m →a = →F が成り立つ。」 とだけ言われて、そうかそうかと理解できる人はいません。物理における演習は、こうしたあまりにも抽象的に記述された法則を、実際の問題に当てはめることによって具体的に理解しようとする営みであることを心掛けて下さい。 そこでまずは簡単めの問題集を使って多くの演習を積みましょう。とは言えあまりに問題数が多くては疲れます。エッセンスを既にある程度勉強されたのであれば、同じ著者の出している「良問の風」はおすすめです。必要にして十分な基礎演習ができるような問題のチョイスがなされています。 演習時に心がけると良いことを、力学分野を例に取ってお話します。 先述の通り、力学では、ニュートンの運動の三法則が基盤にあります。第一法則から第三法則まで順番にそれぞれ、 1.慣性系存在の主張 2.運動方程式 3.作用反作用の法則 です。 特に問題で直接使うのは2と3でしょう。問題文を熟読しましょう。与えられた装置に関して、 ・与えられた物理量は何か?その定義は?単位は? ・そしてそれはスカラー量か?ベクトル量か? ・考えるべき物体系はどれか? ・座標はどのように取るか?(物体のx座標、時にはy座標を定めましょう) ・それは慣性系か?(非慣性系なら慣性力の考慮が必要です) ・考える物体に働く力は?(時には第三法則を使う必要がありますね、使う必要がなくとも常に作用に対する反作用が何か、答えられるようにしましょう) ・物体が質点ではなく剛体の場合、物体に働く力のモーメントは? ・そこからわかる運動方程式(第二法則です)or力のつり合いは? ・剛体の場合、力のモーメントのつり合いは? ・定量化にあたって使うことのできる近似は?(物体を質点ととらえる、糸を十分軽いとする、角度は十分小さいとする、これらは全て近似です) 徹底的に考えていきましょう。 物体が質点の場合、必ずしも力が釣り合って静止、または等速運動しているとは限りません(一方剛体の場合は力のモーメントが釣り合うケースしか基本出題されません、釣り合わない際の剛体の具体的な挙動を高校範囲では扱いません)。運動の第二法則により、力を質量で割った分の加速度が生じます。加速が分かればそこから速度と位置が時間の関数としてあらわされます(エッセンスには v = v₀ + at をはじめとする三つの「公式」が載っているはずです)。すべての力学問題に関して、a-tグラフ、v-tグラフ、x-tグラフを書いてみると良いでしょう(これらのグラフをしっかりと書くことができれば、実は「公式」を覚える必要はありません)。 しかし、複数の物体が同時に動いたり、物体が複雑な経路を経て移動する場合は、物体の位置や速度、加速度を時々刻々と追うことが困難です。そんなときには、物体の運動開始点における状態量と、運動終了点における状態量とを直接結び付けることができる保存量がありましたね、これを用いた定理がずばり運動量保存則と、エネルギー保存則です(これらは第二法則から導かれる定理です)。これを使いましょう。運動量と力積の関係、仕事と運動量の関係もしっかりと押さえましょう。 こんな風にして、物理の包括的な体系を念頭に置き、問題集に載っているそれぞれの問題をしっかりと吟味し、物理公式や定理の証明の過程に具体的な問題をそのまま適応するイメージで問題を解くことをお勧めします(←シレっと書きましたがここ一番重要です)。決して「なんとなく」公式を当てはめて、それで答えがあっていればそれでいいや、といった了見は持たないことです。それをしてしまうと少し問題が複雑になったときに使うべき公式が分からなくなり、困ります。物理の問題が解けるのには、整然とした物理体系に根差した、解けるなりの「必然性」があります。使える公式も、問題ごとに「必然的に」定まることを意識してください。決してテキトーに公式を用いて「偶然」答えを当てるゲームではないということです。 このように一問一問に吟味を重ね、一つの問題について「全て」を説明できるようになってみてください。そうして精力的に解いていくと疲れるでしょう、時間もかかります。当然問題集にもそんなに詳しい解説は載っていません。しかしこれをやり終えたとき、あなたの物理の学力はそれだけでも相当なものになっています。結果として漫然と公式を当てはめて学習するよりも勉強時間に対する学力向上のコストパフォーマンスは高いでしょう。 一応補足しますが、これは決して試験会場でも問題をしっかり吟味し、時間をかけてジリジリ解け、ということではありません。むしろここまで書いてきたような「じっくり」とした解法ではなく、問題集の解説に乗っているような「あっさり」とした解法が好ましいでしょう。しかしそうしたあっさりとした解法の背後には、そのような簡潔な解法を支える物理の壮大な体系があることを理解していただきたいです。深い物理に対する理解があってこそのシンプルな解法、ということでございます。 ここまでの内容を要約しましょう。物理の深い理解に根差した「冗長な解法」と、試験会場でサッと使える「簡潔な解法」、この両方ができるようなトレーニングを、問題演習を通じて日頃の学習の中で精力的に行ってください。 ここまで書いておいてなのですが、これらはあくまで物理の教科書に書いてあることをしっかりと理解した前提でのお話です。問題を解いていて、あるいは解説を読んでいてわからないこと、忘れていることがあればまめに教科書を読み直し、実際に自分の手で定理や公式の証明ができるようにして下さい。 こうして物理の「本物の基礎力」が身につけばあとは話が早いです。志望校の過去問に挑戦するも良し、少しレベルアップした問題集(「名問の森」や「重要問題集」、「標準問題精講」、「難問題の系統とその解き方」など)から自分に合ったものを見つけ演習するも良し、どうするかはその時また考えると良いかと思います。 最後に物理をさらに深く理解するのに役立つ、いわゆる「微積物理」の紹介をさせてください。「微積物理」と言っても、ただの数Ⅲレベルの高校数学を用いたごく一般的な物理です。使う数学も微積に限らず、ベクトル、二次曲線、指数対数関数、三角関数など様々です。「微積物理」は特に、 ・位置、速度、加速度の関係の理解 ・円運動 ・単振動 ・ケプラー問題 ・クーロン則及び電場電位の理解 ・コンデンサーやコイルがらみの回路問題 ・右ねじの法則 ・フレミング左手の法則 ・導体棒問題 ・荷電粒子の運動 ・交流理論 ・熱力学の状態変化 ・その他保存則がらみの問題全般 ・エネルギー収支問題全般 などなど、多くの事象・問題の理解に役立つでしょう。興味に合わせて勉強すれば、さらに物理の問題を鮮明に捉えることができます。例えば運動方程式を立てるだけで、エネルギーの収支が、保存が、勝手に見えてしまうようになると言った具合です。 簡単な参考書から難しい参考書まで、私が知っている範囲で一応紹介しますね。括弧で大体のレベルも書いておきます。 簡単 ↑ ・微積で楽しく高校物理がわかる本 (レベル0) ・微積で解いて得する物理 (レベル1) ・秘伝の微積物理 (レベル1) ・微分積分で読み解く高校物理 (レベル1) ・大学入試完全網羅 物理基礎・物理の全て (レベル2) ・はじめて学ぶ物理学 (レベル2) ・新・物理入門 (レベル3) ・理論物理の道標 (レベル3) ↓ 難しい ちなみに私は新・物理入門を穴が開くほど読みました。 長々と書きましたが、質問者様が以上の内容を参考にし、物理の学習に役立て、物理を得点源にすることを願います。頑張ってください。
慶應義塾大学理工学部 Euclid
6
3
物理
物理カテゴリの画像
理論について
まずは当然ですが公式を暗記しましょう。この時に文字だけで覚えるのではなく日本語で覚えるのがオススメです。例えば運動方程式だったら物体に働く力は質量×加速度で求められるみたいに。(実際は物体に働く力によって加速度が生まれるので因果関係が逆ですが。) 次に公式の使い方を知る。 加速度を求める問題が出たとしましょう。これだけ言われれば単位時間あたりの速度変化、力を質量で割る、円運動であれば半径×角加速度の二乗などいくらでも求める方法はありますが、それぞれ使える場面が異なりますよね。 1つ目でしたら速度と時間が分かっている時、2つ目でしたら物体の質量と力が分かっている時、3つ目でしたは円運動していて半径と角加速度が分かっている時。(円運動だったら速度と角加速度や半径と速度の2つでも加速度は出せますね。) このように公式はたくさんありますが必要な情報がそれぞれ異なっているので何が与えられているからどの公式を使うのか判断する必要があります。 これは二次試験レベルの問題集を使うよりはセミナー等の基本的な問題集で多くの問題を解く上で身につける力だと思っています。 最後に公式の使える条件に注意する。 例えば有名なところですと2物体の運動量保存則は系に外力が働かないことが運動量が保存する条件ですが、これを意識せずに公式を使って間違えている受験生が多いように思います。 これは教科書に書いてありますが、問題を解きながら間違えた時にしっかりと復習をして身に付けていくのが1番だと思います。 長くなりましたが高校物理は数学と似ています。基本的な問題に関しては解き方を理解した上で暗記してしまうぐらいに復習をして似たような問題が出題されれば即答できるようにしましょう。実際数学よりも問題のバリエーションは少ないため同じような問題は何度も出題されます。
大阪大学工学部 T.T
2
1
物理
物理カテゴリの画像
指数関数を解くコツは
こんにちは! こうしんと申します! 指数関数…というと範囲が難しいので、 最大最小問題の解き方→指数関数の処理方法 という形で話を進めていきますね! まず最大最小問題ですが、これは方程式・関数を扱う分野で出てきます。 この分野の攻略方法は以下の通りです ・文字を見分ける ・解答法を知る (方程式として解く、関数として解く、不等式として解く) 一つずつ説明していきますね。 ・文字を見分ける 文字は、定数と変数があります。物理ではこれがはっきり決まってますが、数学では全く別の性質で、定数でさえ値を動かすことがあります。 なので 定数…中心にはない文字 変数…中心に扱っていく文字(〜と解く、微分する、といった文字の中心となります) これをまず見分ける必要があります。 見分け方は、定数が「分布(どういう値をとるのか?)を知りたい文字」であるという性質がある点です。他には、定数の方が次元が高い、扱いづらいという特徴がありますね。 こうして、変数を絞り込んでおきます。 変数は1個にしてください。 ・解答法を知る 解答法は3つに分かれます。 方程式としてみる →解の配置(0より大小となる点を探す)・座標・対称式 関数としてみる →微分してグラフを描く 不等式としてみる →実数の2乗は0以上を使う、コーシーシュワルツ、相加相乗平均 (不等式は難しいので、関数としてみた方が早いです) これらの解答法を調べてみてください!完璧にすると対応ができます! 最大値というのは、 ・関数がそれ以上に増えない値 ・それを満たすxが一つ定義域に存在する値 であるという性質を持ちます。 最小値は、反転した性質ですね。 そのため最大値の候補は絞られます →①極大値 ②区間の端 この2点を調べてみましょう。(最小値は反転です) 最後に、最大最小を論じる際に、よく出てくる言葉があるので、それを押さえておきましょう。 ・領域→「接する時」「端の時」に最大最小 ・接する→最短距離があります、注意です ポイントはこんな感じです! よく分かんないかもしれませんが、演習しながら見てください!意味がわかってくるはずです! 頑張ってください!応援してます!
京都大学理学部 こうしん
20
0
理系数学
理系数学カテゴリの画像
微積物理 今始めるのは遅すぎ?
こんにちは! 高校3年から微積物理をして理学部に現役合格したものです。 私の経験、また周りの意見を総合すると、ずばり「役には立つが合格には必要なし」と言ったところです。 大学入試は、高校での学習指導要領に基づいて作られます。それは東北大学でも同様です。いかなる問題も通常の教科書、問題集を解いておけば解けるように設定されているのです。つまり微積を使った理解をする必要はありません。 私は「物理重要問題集」を使って高2から演習をしていましたが、微積物理を始める前から模試の成績は安定していました。その他にも「名問の森」などでも良いでしょう。 しかしながら、電磁気分野では、公式だけではどうしてもしっくり来ない部分が出てくる可能性があります。そういった場合には2つの対処法があります。 1つ目は「そういうものだ」と受け入れるということです。物理の公式は全て物の性質を表しているので、「そういう性質なんだな〜」と流してあげてください。 それでももやもやすれば、その部分だけインターネットで調べてみて下さい。各大学や学術機関がきっとその分野の説明を「微分積分を用いて」あげてくれています。 もしあなたが大学でも物理を続けるのであれば、高校で微積物理をすることは大いに役立ちます。なぜなら大学の力学や電磁気学=微分方程式を解くことであるからです。多くの理系大学1年生は微分方程式に慣れていないので、かなり苦労しています(京大生でも)。 逆に、物理は高校までと考えられているのであっても、微積物理をすることは後に役立ちます。ほぼ全ての理系大学生は1年生で「微分積分学」を履修します。読んで字のごとく微分と積分をしまくるので、これに慣れておけばスタートダッシュ間違いなしです。 参考までに、私がなぜ微積物理をしていたかを説明します。 第一に私は物理を武器にしたかったからです。英語が得意だったので、もうひとつ安定して点数を稼げる科目が必要だったので、他の人に理解度で差をつけるためにしていました。 また、単純に微積を使った物理は非常に楽しいものだったので辞める理由がありませんでした。いわば「息抜きとしての学問」でした。 結論としまして、「入試で高得点をとるのに微積は必要ないが、大学や内容理解には有益な時がある」ということです。 受験生時代は私も同様に微積すべきかどうか悩みましたが、結局は高得点に必要ないものでしたし、今から慣れ親しんだ公式を手放すリスクは負わなくていいです! 自分を信じて頑張ってください!
京都大学理学部 bull
0
0
物理
物理カテゴリの画像
計算練習した方がいい分野
こんにちは。勉強お疲れ様です。 「計算練習」をひたすらにやれ!という分野であれば、間違いなく微分積分です。ですが、私が次に推したいのは実は「複素平面」の練習なのです…。 微分積分について 理系の受験数学で、出ないことはない!と言い張れるくらいにはめっちゃ出ます。ほんとうに。 必ず出る分野ならば、そこは「早く解く」ことができて、さらに「確実に正解する」ことができることが大事ですよね。「早く解く」、「確実に正解する」ともなれば、それに必要なのは計算練習です。微分、積分の練習については以下に記す通りにやるのがオススメです。 微分の練習 ①時間制限を設けて、スラスラ微分する。 (現時点の自分の全速力でかかった時間×0.8で設定してみてください。間に合うまで頑張りましょう。) ②微分後(導関数)の形を覚えてしまう。 (積分でめっちゃ役に立つんです。「微分形の接触(f(g)g'の形)」の際に、「これ、gの微分形じゃん!」ってすぐに見抜けるようになるのです。) 積分の練習 ☆手を動かす前に頭で考える。 (適当に手を動かすのは練習になりません。「この積分は、どの解法で解くのかな…?」「これだ!これならいける!」ってなるまでは手を動かしてはいけません。) 呼吸をするように積分しましょう! (そのために微分の練習が不可欠です。) 複素平面について 実は受験で出たら確実に解けるランキング第1位なんじゃないか?って思っています。複素数の解き方には数パターンしかないんです。出題のされ方もパターン化され切っています。「あ〜こういう系ね。」と分かるくらいまで練習していれば、確実に大問1個分正解できてしまうんです。 「青チャートが一対一になっていて演習量に不満がある」ということでしたが、複素平面に関しては安心してください。青チャートに載っていない解法の問題はおそらく出ません。青チャートの複素平面の問題を全て完璧に解けるように何周も練習することもオススメします! 受験勉強って結構モチベ保つのしんどいですよね。好きなお菓子食べたりするといいですよ。それと、数学に飽きたらほかの勉強しちゃっていいですよ。ほかの勉強が飽きた後に数学に帰ってくればいいんです。 数学の問題集にもいずれ飽きが来ると思います。そうなったら1度過去問に手をつけてみましょう。(〇進の過去問データベースおすすめ!) 過去問演習が1番数学の中で楽しいですよ!
慶應義塾大学理工学部 数学の都
11
3
理系数学
理系数学カテゴリの画像
良問の風はセンター対策につながるか
初めまして 物理をセンターで使うということで理系選択者ということで話を進めますね 結論としては、使い方を間違えなければ対応できます 物理という学問は最初の一手、概念理解の重要度がとてつもなく高いものです つまり、問題を解きまくって、解答に慣れて、類題を解けるようになって、、という勉強法では少し状況が変わった時に(その少しの程度は本人の理解に依ますが)非常に高い確率で何をしたらいいのかわからなくなります なんで、なんでその解法を取ったかの理解が重要ですが、理解すればわかりますがほとんどが定義通り、ルーティンどおりであることがわかります 例えば力学で言えば、①注目する物体を【1つ】決める②その物体とそれにかかる力を図示する かかる力は遠隔作用(重力、電気力、磁気力のみ)か、近接作用(物体に【直接触れている部分からかかる力】)のみ ③その力をx成分、y成分(必要ならばz成分)に分け、各方向で運動方程式を立てる(つりあいの式は運方のa=0バージョン) ④そこから加速度aをだす ⑤aが出ればv,xも求まる ⑥他の保存則の式を立てる というようにするルーティンどおりにやればどの問題も解けるようになっています 例えが長くなってしまいましたが、こういう(物理の原理、定義に基づいた)ルーティンを意識して問題を解けば、良問の風でも十分センター対策になり得るはずです またこれらの考えどおりにできればそのまま二次、私大対策にもこのルーティンが通じるので、どの問題集をやるにも上記のような、実際の高校物理ので習う現象から考えれば至極当然な理論から出てくる式などを意識して取り組むことをお勧めします 残りの受験勉強も頑張ってください🙏
早稲田大学先進理工学部 エムジェー
4
1
物理
物理カテゴリの画像
やり直しの仕方
数学の問題をやり直す上で、解答や式変形を一字一句覚えるなんていうことがな必要ないことは言うまでもないことだとおもいます。 なぜなら、数値、条件が全く同じ問題なんて人生でそう出会わないからです。 では、どうするのか?ということですが、僕が意識していた点はその問題の核となる部分を抽出し抽象化、一般化することです。 要は1から10を得てほしいと言えばいいのでしょうか? 具体的に説明すると、立体図形の問題で、ベクトルで解こうとしたけど、なかなか上手くいかなかった。 解答にはベクトルによる解法が書かれておりその解法がなかなかテクニカルで簡潔である。 しかし別解に座標を置いて計算でごり押しする解き方も書いてある。こちらの方法はなかなか、計算量が多そうだ。 こういうことがあったとします。 こういう時に、じゃあテクニカルな式変形を覚えようとしていてはなかなか数学力はつきません。 この問題の復習はいくつかやり方が考えられますが、この問題の核を抽出し一般化とは、以下のようなことです。 1.確かにベクトルのやり方もいい。なので、頭に留めておこう。 2.座標を置くやり方は計算量が多い一方、やっていることは素直である。なので、本当に思いつかなかったら、最終的に座標を置けばいいのではないか? 3.角度といった条件は出来るだけベクトルで扱うのが良さそうだ。 4.交線などは、座標を置き平面の方程式を立てて求めていくのが良さそうだ。 などなど得られることはたくさんあるはずです。 これはあくまで一例ですが、1つの問題から学べることは案外多いものです。 無作為に問題数をこなすのではなく密度の濃い演習をこなすことをお勧めします! あくまで僕個人の意見ですので、何か参考になれば幸いです。
東京大学理科一類 ゆかい
22
1
理系数学
理系数学カテゴリの画像
物理何をすればいい?
問題となっている現象を鮮明にイメージできていますでしょうか?物理と数学の一番の違いは「問題の対象が現実世界における具体的イメージを持つかどうか」です。問題を見て、使う公式を選んで、式をいじって答えを出すだけだと、どうしても本質部分が理解できず応用問題には手が出せなくなってきます。 例えば「2つの質量が同じ物体が弾性衝突する問題」はどう考えますか?多分「運動量保存」と「弾性係数の式」を連立して解くと思います。ただこれは鮮明なイメージが持てると「衝突前後で速度が交換される」ということが計算せずともわかってきます。このようにただ数式を無我夢中にいじるだけではなく、数式を使わずともわかるようなことは物理では多くあります。そのようなイメージが持てれば、実際に計算してみた結果がイメージと大きく異なる場合、計算ミスを自分で発見できる可能性があったり、計算が面倒くさい問題(例えば大まかな粒子の軌道を示す図を選べといった問題)を計算することなく正解を選べたりします。したがってただ数式にこだわるのではなく、今考えている問題ではどのような現象が起きているのかじっくり考えつつ演習してみてください。焦らずやっていくことが重要です。 一方で、数式をおろそかにして良いというわけではありません。特に公式は暗記するだけでなく、導出過程も理解しましょう。導出過程には物理現象として重要なポイントがたくさん詰まっています。ここを理解することで、先述した鮮明なイメージを描きやすくなります。 例えば、波動分野での反射の法則の導出過程はご存知でしょうか?ホイヘンスの原理というものから導出します。過去の大学入試では、このホイヘンスの原理からの導出を題材にしたものも出題されています。 とにもかくにも焦らず基本をじっくり固めていくことが重要でしょう。 参考書ですが河合塾の「物理のエッセンス」などはいかがでしょうか?自分が使っていたのはもう何年も前なので詳細は覚えていませんが、かなり公式の説明が詳しく載っており、物理の正しいイメージが掴みやすかった記憶があります。ただ記憶違いかもしれませんし、参考書は人によって好みがはっきりと分かれるため、ぜひ本屋で実際に手に取って確認してください。 稚拙な長文、失礼いたしました。
東京大学理科一類 Smith
3
1
物理
物理カテゴリの画像
問題状況を正確に出来るだけ早く把握してミスを防ぐにはどうすればよいか
東工大情報理工学院1年の者です。 勉強お疲れさまです。 東工大の物理は、記述式だし、後半の計算が重いし、なかなか大変だと思います。 ここから、計算ミスを無くすコツについて解説しようと思います。 まず、持論ですが、なぜ計算ミスをするかの理由をご説明します。 ひとつの側面として、計算ミスは、自分の能力が、問題の方針を立てることが出来るくらいには高いが、問題の方針を立てつつ、計算ミスに気をつけることが出来るくらい脳のリソースを余らせることが出来ていないから発生するのです。 2回目で高得点が取れるのは、一回目で方針を知っていて、計算ミスを対策するのに使う脳のリソースが余っているからです。 ですから、もう受験まで1ヶ月を切っていますが、ひたすら経験値を積み続けることが大切です。 次に、即効性のある計算ミスを減らす方法をお伝えします。 それは、極端な例を考えることです。 簡単な例で、2つの物体が衝突することを考えましょう。 反発係数が絡むので、符号ミスが起きやすいと言えば起きやすい例だと思います。 質量m_aの物体Aが速度vで移動していて、時刻t=0で質量m_bの物体Bに衝突したとしましょう。反発係数はeとします。この時の衝突後のAとBの速度を求めなさい。 この問題に対する答えは、分数になってここに書くのは難しいので省略しますが、例えばeを0にしたならば、物体AとBは同じ速度で運動しなければおかしいです。 さらに、物体Bの質量を無限にしたら、物体Aは動かない壁と衝突した時と同じ挙動を示さなければおかしいです。 物体Aの質量を無限にしたら、物体Aの速度は変わらないはずです。 このように、ある変数を極端な値にとったとき、解答が矛盾していないか考える事はかなり有効な手段です。 この手法は、物理に限らず、数学などでも有効です。 以上になります。 あと1ヶ月弱頑張ってください。貴方が後輩になる日を心待ちにしております。
東京工業大学情報理工学院 はる
2
0
物理
物理カテゴリの画像