UniLink WebToAppバナー画像

数学が全然できるようにならない

クリップ(34) コメント(13)
9/6 23:47
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

KO

高3 東京都 同志社大学社会学部(60)志望

文転した私文志望の者です。 共通テストは英国数を使おうと思っており、私大選択科目でも使おうとしてます。 数学が全然できるようになりません。 夏の間に、塾の先生からお薦めされた文系の数学重要事項完全習得編をやって、今もやってるのですが、そこに載ってる問題は繰り返しやったからできるようになっていってるのですが、模試の問題や、大学の過去問を見た時に頑張った単元でも、初めて見る問題のように見えてしまい、解けなかったり、すぐに手が止まってしまいます。 数学用語も難しくて、すぐ意味を忘れてしまったりします。 文転したから数学受験しようとしてたけど、政経に今から変えようかな、、見たいな弱気な考えがいつも頭をよぎるくらい数学が一向にできるようになりません。 今までの成績は、高2 2月 ⅠA53点 ⅡB56点 高3 5月 ⅠA37点 ⅡB45点 高3 8月 ⅠA50点 ⅡB62点   です。 親にも怒られてばっかりで気分がいつも沈んでます。 どうやってあと5ヶ月で早稲田と同志社に通用するようになりますか?

回答

回答者のプロフィール画像

RIZ

大阪大学経済学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。
さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
UniLink パンフレットバナー画像

コメント(13)

kodaのプロフィール画像
koda
9/7 1:05
ありがとうございます! 問題集の解説で、なぜそうなるかがわかるやつはできるようになってくのですが、なぜそうなるかが解説を見ても理解できないことがあります。 結果としてそれを覚えてしまい、本番で全く使えないものになってしまってます。 そのような問題は1日に10問やるとしたら3問くらい毎日出てきます、、、
RIZのプロフィール画像
RIZ
9/7 1:16
なるほど…、正直解説を見てもわからない場合はネットで調べるか、先生や友達に聞くしかないですが、場合によっては違うアドバイスができるかもしれないので、例えば1つ実際にわからない問題と、どこがわからないのかコメントしてもらうことはできますか?
kodaのプロフィール画像
koda
9/7 1:34
まあでも、結局はなんとか理解できます。僕はわからない→解説見て理解→解き直しの流れでやってるのですが、解説見て理解のところで、とんでもない時間を要します。それで理解が浅いのかわからないですが、めっちゃ時間かけて、他科目の勉強時間も削ったのにちょっとしか成績が伸びない、又は下がるということが起こります。 数学でとても足を引っ張っている感じです。 わかるまでめちゃくちゃ教科書やスタサプをいちいち確認してるので理解できてもそれをできるようになるまで膨大な時間がかかってしまいます。 あと試験で見る問題を解き進めてみても、絶対途中で訳がわからなくなってしまいます。自分が何でこの計算をしてるのか、この知識をここで使うのは合ってるかどうかがよくわかってないからな気がします。
RIZのプロフィール画像
RIZ
9/7 2:16
理解の程度については実情が分からない以上何とも言えませんが、1つの指標としては、解答を見ずに1からすべての過程を説明しながら解答を再現できるかが挙げられるかと思います。これができていれば理解としては十分です。 また、解説を理解するのに時間がかかるのは正直仕方がない部分はあります。特に初学の場合はかなり時間がかかってしまうので、自分で調べるよりも誰か先生などに聞いた方が早いかもしれません。 最後に、解答の途中でわけがわからなくなるとのことですが、これについてはやはり「なぜ」その解答をするのかを明らかにすることで解消できるかと思います。解消しない場合は、もしかしたらその「なぜ」の部分がまだなんとなくになってしまっているのかもしれません。しっかり問題文のどの条件から考えられたものなのか、対応づけるようにするとよいです。あとは最初に問題を解く方針を考えてから解答するといいかもしれまぜん。方針が立たなければとりあえずできることをやってみるのも手ですが、まずは問題文で求められていることから逆算して、それを解くためには何の情報が必要で、その情報を得るためには何が必要で、というのを考えて方針が立てば途中で何をしているのかわからなくなることはなくなると思います。この方針を立てるというのも、いかに日頃から解答の流れを意識できているかという経験によるものなので、たくさん問題に触れて慣れていくしかないかと思います…。 以上になります。正直ネット上のやりとりだけだと実際の状況がわからないので抽象的な話になってしまって申し訳ないです…、お役に立てるかはわかりませんが追加で分からないことがあればコメントしてください!
kodaのプロフィール画像
koda
9/7 16:10
解答の方針をちゃんと立てずに解いていることが多かったです。 これからはちゃんとゴールから逆算してやってみるとできる気がしました! けど、問題集にある問題は1から答えまで、ちゃんと書けるようになるまでやっているし、それができる問題は増えてきましたが、なんかこう、その問題にしか対応ができないというか、初めてみる問題でも(1)〜(4)くらいまであるとしたら(1)くらいしか解けないです。 あと試験はいっぺんにいろんな単元の問題がたくさん出てくるので混乱していつもド忘れしたりします。
RIZのプロフィール画像
RIZ
9/7 16:36
まず初めてみる問題に対応できない場合、パターンは2つあって、1つは答えを見ればわかるが、思いつかなかった場合、2つは答えを見てもわからない、つまり自分の解法のストックにない解答である場合です。前者については、やはり日頃から問題文の条件に対して解法をたくさん想起できる訓練をするしかないです。後者についても、結局そのわからなかった解放パターンをその都度ストックするしかないので、あまり即効性はないですが、確実に力にはなります。 あとは(1)から(4)まであって最初の方しか解けないとき、(1)は(4)を解くための誘導になっているという意識が薄い場合があります。(1)はあくまで最終的に(4)を解くために大事な条件を導く過程であると考えると、(2)以降の問題の解法を思いつくきっかけになることがあります。これも前にお話ししたように、最初に解答方針を立てるときに、(1)の結果が分かれば何がわかるのかと考えていけば、解決できる可能性があります。 最後に、試験になると色んな分野が出てきてわからなくなってしまうというのは、日頃から分野別問題集のみやっているのが原因かもしれません。その場合、前提としてその分野の知識を使って解くんだという、ある意味ヒントを得た状態で取り組むことになってしまっているので、過去問などの分野がランダムにシャッフルされている問題で実践的に訓練するしかないと思います。例えばベクトルの問題でも、場合によっては(特に対称的な図形は)座標に置いた方が解きやすい場合もありますし、分野に縛られすぎない考え方を身につけるとよいです。そのためには普段から分野別になっていない過去問などで実践的に訓練するしかないかと思います。
kodaのプロフィール画像
koda
9/10 21:04
なるほど! 自分は最後までいける単元もあるのですが中々思いつかない単元もあったので、振り返ってみるとベクトルなどは前の答えをめちゃくちゃ使っていたなと思いだしました! 前の答えから解放の手がかりを探すことをもっと意識します。 過去問ってマーチの文系数学からやってもいいのですか? 見た感じ、同志社と早稲田社学の文系数学は同志社の方が難しく感じました。 あと共通テスト模試なんですが、わかった単元は9割くらい最後まで辿り着けるのに、よくわからないと思ったところは序盤からどんどん点を落としてしまい、結局5〜6割くらいに収束してしまいます。これは問題演習あるのみですか?
RIZのプロフィール画像
RIZ
9/11 2:05
過去問については志望校であればどれから取り組んでもよいと思います。直近1〜3年分くらいは本番前の力試しとしてとっておいてもいいかもしれませんが、自分の場合は特に気にせず取り組んでました。今日は早稲田、明日は同志社という形で交互に変えてもいいかもしれません。別に毎日1年分とかやる必要は無いと思います。早く消化するというより、最初はじっくり時間をかけて解いて、時間があれば解けるのか、それとも時間があっても解けないのか明らかにしましょう。時間があっても解けない場合は、特に答えをしっかり理解した後で、その問題では何が分からなかったから解けなかったのか、自分が大事だと思うポイントを箇条書きで書いておくとよいです。そうすれば次同じような問題に当たった時に解法が思いつきやすくなります。もし志望校の過去問をほとんどやり尽くすということがあれば、同じレベルの他大学の過去問に取り組むのも手ですが、私大の場合特に大学特有の形式があったりするので、まずは志望校の過去問をちゃんとやるのをおすすめします。 また、共テ模試のことについては、やはり誘導に乗るというのが物凄く重要になってきます。現状としては、上手く誘導に乗れた単元は最後まで解き切れるということだと思うので、まずは苦手な大問だけに絞って、センター数学過去問や予想問題、共テ過去問などでその分野だけを時間を測って10回分とか取り組むとよいです。そこで誘導に乗る感覚を掴んでいきましょう。また、特に共テは時間配分が結構大事だったりするので、その大問に割り当てる時間より2分から3分短く時間を設定して、その時間で解き切る練習をするとよいです。
あいうえおのプロフィール画像
あいうえお
9/14 19:44
共テの問題集で、苦手分野からどんどん潰して行こうと思います。 苦手分野って教科書の例題を完璧にできるようにする、だけだとダメな感じですか?
RIZのプロフィール画像
RIZ
9/14 20:04
苦手分野についてはまずは教科書の例題をしっかりできるようにするのが第一段階ですね。確かに極論言えば教科書だけやれば入試問題に必要な知識は得られますが、かなり応用力がある人じゃないと入試問題に対応するのは厳しいと思います。基本は教科書→チャートなどの網羅系参考書→過去問の流れですかね。
あいうえおのプロフィール画像
あいうえお
9/15 16:04
チャートではなくて文系の数学(赤)の途中まで今やってます。たまに過去問もやってみてる感じです。10月ごろから青の方もやろうと思っています。
RIZのプロフィール画像
RIZ
9/15 16:16
チャートでなくても基本解法が網羅されている参考書であれば問題ないです。頑張ってください!
あいうえおのプロフィール画像
あいうえお
9/15 18:19
ありがとうございます!

よく一緒に読まれている人気の回答

数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
34
8
文系数学
文系数学カテゴリの画像
証明や導出がすごい気になってしまう
三味線さん、はじめまして。 お気持ちはすごく分かります。 たしかに解答の細かいところに疑問を持ったり、その都度公式を導出していると参考書の進むペースは遅くなってしまいますが、その分、質は高くなると思うので全然良いことだと思いますし、むしろそうするべきだと思います。 よく言われる「数学は理解」という言葉は、なぜその公式を使ったのか、なぜその解法で解くのか、なぜその変換を行うのか、もっと細かいことで言うと、なぜその順に解答を記述するのかといったことを理解することです。 「数学は暗記」という言葉もたまに聞きますが、これは単純に英単語みたいに暗記すると言うことではなくて、どうしてこの解法を使うのかを理解した上でどうゆう問題が出たらどの解法を使うのかを暗記すると言うことです。 仮に理解の過程を飛ばして暗記だけすると、少し問題の形が変わっただけで解法が思い浮かばないということになってしまいます。 そして理解を深めるためには、三味線さんのように細かいところにも疑問を持って問題を解くのが一番の近道です。公式は導出ができる方が理解度ははるかに上がりますし、たまにある公式の導出に基づいた問題なんかも出題されることもあります。 また質問文中のことで触れると、なぜ置換積分はこうゆう形でするのか、一次独立とは何か、解答に使われている言葉の意図、こういったことに疑問をもって考えるのはとても良いことだと思います。確認しても忘れてしまうのは人間なので仕方ないことで、確認してその時に理解したことをノートなんかに纏めておきましょう。次に同じような疑問が出た時にノートを見返すことで少しずつ定着して力になっていくはずです。 私の場合だと2.3回では定着せず、5回とか10回その都度見返すことで定着し始めた感じだったので、忘れているから力になっていないと焦らずに、自分のペースで頑張ってください! 応援しています☺️
京都大学工学部 さかさか
5
2
理系数学
理系数学カテゴリの画像
形式的に覚えてしまう
数学と化学に関しては私も現役の時は心当たりがあります。特に数学はセンス的な要素が強いと思っていたので、解ける解けないの差が激しかったです。 さて、少しひねった問題が来ると解けないのが悩みということですが、まず、最低限の勉強ができていることが大事です。おそらくそこらへんはテスト期間で補っているので大丈夫かと思います。 その中で同じような問題で少しひねっている問題というのはどうすればいいかわからないと思うかもしれませんが、解き方としてはひねる前の解き方と同じようなのに気づくことはできているでしょうか?そのような問題の模範解答をじっくり吟味しているでしょうか?その時解けなかった問題はしょうがないですが、そのあとのフィードバックが大事です。そして、この解法やったことがあるなと感じることが大切です。 具体的に述べるのは難しいですが、例えば二次方程式の2解が正の値をとるための条件は f(0)>0 軸>0 判別式≧0 で必要十分ですよね。これは大丈夫でしょうか? これの少しひねった問題が例えば二次方程式の解が0<x<1の範囲で持つ条件はどうでしょうか? これは場合分けが必要ですが、そのうち2解がともに0<x<1の範囲の時はどのような条件かというと f(0)>0 f(1)>0 0<軸<1 判別式≧0 で必要十分です。これと先ほどの上の条件と比較すると同じような感じですよね?つまり端点のみに具体的な数字の条件があるときにこのような条件で進めていくのがセオリーです。 上の解法を知識ゼロから解けと言われたら厳しいものがあるかと思いますが、一通り通っていることなら問題を見たときに「あっ、この問題はこの解法かな?」と瞬時に判断できるはずです。その感覚が大事です。「あー、これどうすればいいんだっけ…?」みたいな感じになっているのは良くないです。 これは勉強する時は問題を解き始める前に一瞬立ち止まって考えください。これを意識するしないとでは雲泥の差です。これは私自身、現役の時には気づかなかったことですが、浪人してからはこのことを意識するだけで、解ける問題のレパートリーが増えました。 闇雲にただ問題をこなすだけなら、むしろその場しのぎになってしまいます。それなら、数学の問題とかは時間がないのなら問題をみてこのような解法でいけばいいかなと思えるなら解かなくていいです。 要は、解き方に“意識“して問題演習を行ってください。時間のかける方はこっちの方です。 模試の前とかは、全国模試であれば定期テストなどでできなかった問題の教科書レベルの類題を確認する感じでいいと思います。高校生は部活等で時間がないと思われますので。
慶應義塾大学理工学部 シュンペーター
21
0
理系数学
理系数学カテゴリの画像
なんとなくで解いてしまう
こんにちは😃 現代文を解く上で最も大事なことはその文章が何を言いたいのかということを掴むことだと思います。 特に評論文などは筆者の主張が言葉を変えて、何回も登場してきます。だから、キーワードとなる語や繰り返し出てくる語にはチェックを付けて読んでいました。 また、二項対立で論じられている文章では一方の事柄については普通に線を引いて、もう一方の事柄については波線を引いていました。同じように筆者の中でプラスの事とマイナスの事も後から見て分かるように違うマークを付けて区別していました。共通テスト模試は時間制限も厳しく、丁寧な読解はなかなか厳しいですが、練習の中で主張の言い換えを見つけたり、対立軸を意識する事が大事になってくると思います。あと、当然ですが接続詞や文意を変えたりする表現には気をつけて読みましょう! なので、現代文を解く上で身につける力としては、その文章の言いたいことをできるだけ早く見抜くことです。 なかなか難しいことですが、これに関しては問題演習をして経験値を積むしかないです。実際にペンを持って言葉と言葉をつなげたり、文章にマークや線を引く練習をしていくことが最初の内はベストだと思います。 とにかく、自分の中で筆者の意見や考えが分類できていることが分かり、整理されていれば大丈夫です🙆‍♂️ また、完璧に筆者の言いたいことが分からなくても全然オッケーです。あくまで、問題に正解することがやるべきことで、主張を理解するのはそのための足掛かりですから。 あと、選択肢を消す際に数字や記号のところを消すのではなく、間違っている箇所に印を付けるクセも大切です。一発で答えが出せる設問もありますが、共通テストレベルの問題でもイヤらしい問題が多く、その場合消去法でしか消せない時があり、わずかな違いが大切になってくるからです。 それから、質問者さんがどのような形で現代文を取り組んでるか分かりませんが設問を先に読んで問われることを先に分かっておくことは共通テストの現代文を速く解く秘訣だと思います。選択肢までは見ないですが、共通テスト特有の図表やグラフの問題は先に見ておくと結構すぐに解けることがあります。 最後に、私もいつもできたわけではないですが、自分と文の筆者、そして作問者の3者を問題を解く際に意識してました。なぜこの文章を大学側が出し、ここに傍線部を持ってきているのか、共通テストであれ、個別入試であれ国語という入学試験である以上必ず意味があるはずです。問題を作っている人の意図や大学側の伝えたいメッセージを考えながら俯瞰して読めことができるようになれば現代文に関しては大丈夫です。 現代文の読解は人それぞれなので私の読み方が必ずしも正しいとは限りませんが、是非参考にして下さい! 受けておいた方がいい模試に関しては河合塾の早慶レベル模試や代ゼミの早大入試プレなどです。 やはり冠模試は実際の受験者が多く受けるので、自分の立ち位置を知る上で非常に役に立ちます。 また、質問があればぜひ聞いてください!
慶應義塾大学経済学部 Ryo
29
7
模試
模試カテゴリの画像
もう何をしたらいいかも分からないです
ひなさん、お久しぶりです。 すごく辛い心境が伝わってきました。何かお力になれればと思います。 今回は、 ①英語を復活させるための具体策 ②過去問最低点にいつ到達すれば良いか ③併願校選び の3点で回答します。 ①英語を復活させるための具体策 英語という科目は過去問を解き始めてある程度するとスランプに落ちる人が多々います。私もその1人でした。急に長文が読めなくなり、頭に入ってこなくなる感じです。もしそうでなければ今からの話は的外れなのでスルーしていただいて結構です。または別途コメント欄等で再度ご質問頂ければと思います。 長文が急に頭に入らなくなった、読めなくなったという症状の場合、その原因候補の一つとして、読むスピードの上げすぎが挙げられます。過去問に慣れてくると、急激に解く時間を短くしようとする傾向があります。その理由は今の時期の実力では規定の時間内解ききれないからです。今そのような状態ではないですか?または解ききれてもどんどんとスピードアップしようとしてはいませんか? この症状を改善するための本質は、スピードを適正化し、しっかりと根拠を持った状態で解答を導き、正答率を上げることです。 具体的には簡単な長文問題を確実に解く訓練をするとよいでしょう。センター試験を使うと良いと思います。センター試験の問題は専門家が長い年月をかけて作るので、問題の作りが非常に精巧です。受験のエッセンスが詰まっています。また共通テストのようにポスター読み取りなど無駄な部分がありません。 センターは簡単だからと軽視しがちですが、センター試験ほど良質な問題はありません。どの参考書よりも素晴らしい問題だと私は思います。 最初は規定の時間で良いので、発音問題を除き、1ミス以下を毎回確実に取れるようにすると良いでしょう。解く際には一問一問解答の根拠を持ってください。解答根拠となる部分には線を引くなどして丸つけの際に自分がどんな思考プロセスだったかを明確にします。 センター試験のような基礎なレベルの問題を用いるのはここに理由があります。早稲田のような文章だと難解で解答根拠が非常に見つけにくく複雑な場合があるからです。ゆえに練習に適切ではありません。中には解答根拠がはっきりとしないものがあったりします。予備校でたまに答えが割れるのはこれが原因です。また、センター試験では解答根拠がはっきりしない問題は99%ありません。それもセンター試験を用いる理由の一つです。 この訓練をすることによって、読むペースを適正化し、正答率を上げることができます。これができるようになったらもう一度過去問に戻ってみて下さい。きっとスピードは今よりも少し落ちますが、根拠を持って解答するクセが改めて身につくと思います。それにより、正答率は上がるはずです。正答率が上がったらまたゆっくりと読む速度を上げていくと良いでしょう。 ②過去問最低点にいつ届けば良いか 結論、本番当日です。12月時点で最低点を取れていなくても何ら不思議ではないです。むしろ年内に最低点が取れるなら、志望校のレベルを上げても良いくらいかもしれません。(少し言い過ぎかも)現役生の成績が“最も”伸びるのは1月後半から受験当日までの期間です。今までやってきた積み重ねの複利が最大化するからです。私も明治の政経を受験しましたが、この時期明治政経英語の合格点は取れていませんでしたよ。だから落ち着いてやっていきましょう。 ③併願校選び ひなさんは現在、早稲田以外の受験校はと中央法、明治政経の2学部のみのようですね。 はっきりと申し上げて、明治政経と中央法では併願校としてレベルが高すぎると思います。明治政経は言わずもがなMARCHトップレベルですし、中央法も茗荷谷キャンパス移転に伴い今までよりも難易度が上昇することが見込まれています。 私は受験校をもう少しもう少し幅広くするべきだと思います。金銭面で問題なければ、最低限MARCH下位学部、また理想は日東駒専まで受験することです。 しかしながら、早稲田、明治、中央以外には行きたくないという主張も非常によく分かります。ですが、明治政経と中央法に受かっていない状態で早稲田を受験するのと日東駒専どこか一校でも合格を持った状態で早稲田を戦うのにはメンタル面で大きな差があります。 絶対に行かないから受験しないのも分かりますが、早稲田受験に向けたメンタル維持のために受けることを強く推奨します。 受験校を増やしても、受験対策はほぼ増えません。日東駒専やMARCH下位学部は一月が終わるまでに過去問を1年ずつでも解けば大丈夫です。早稲田の対策をしていれば当たり前に解ける問題ばかりだと思います。 受験校増加のデメリットは、試験日程が多くなることです。ですがそれも受験慣れに繋がります。行けば分かりますが初めの方の受験は緊張するものです。何度も受けていくと慣れます。早稲田には慣れた状態で試験に臨んだほうが良いです。 また、これは余談ですが、早稲田慣れというのもあります。早稲田の受験は2月下旬に集中するので、他大学の受験を終えた状態で早稲田受験を迎えることになると思います。その際、受験慣れしたつもりでも、やはり本命の大学、自分が丸一年捧げてきた場所に来ると、他大学とはまた別の緊張に襲われることがあります。人間緊張すると本来の実力を発揮できないことがあります。それは避けたいものです。 今年の早稲田受験日程は教育、商、社学の順に、19日、21日、22日です。もし教育学部で緊張によってペースが崩れてうまくいかなかったとすると、ドミノ倒し的に商、社学と崩れる恐れがあります。 そこで、金銭的余裕があれば文化構想学部も受験すると良いでしょう。文構の試験日は例年早く、今年は12日です。教育学部と1週間離れています。文構で早稲田の緊張に慣れてしまえば、他3学部は安心して受けられます。 また、文構は試験問題が他3学部とは傾向が異なります。よって、時間がなければ、もしくは行きたくなければ、文構対策は不要です。あくまでも早稲田に慣れるために行くと良いと思います。 前回もお話ししましたが、きっとひなさんなら大丈夫です。ぜひ最後まで走り抜けて下さい。 合格を祈っています。
早稲田大学社会科学部 kobayash
41
12
英語
英語カテゴリの画像
一度やった分野を忘れないようにするコツ
こんにちは!東工大一年のたまちゃんです! 物理に関しては分野がわからないので、助言しにくいのですが、苦手な分野であったり、忘れやすい分野があるのであればそこを繰り返しやりましょう。 でも、基本的に物理は理解していれば忘れにくいです。熱力学を例に挙げると、定圧変化・定積変化・等温変化などはどうなるとかを覚えていなくても理解していれば何とかなります。ドップラー効果の式なども覚えなくても理解していれば導出可能です。覚えていた方が早いので出来れば覚えて欲しいですが… 例えば、f= の式の分母が観測者だったかな、音源だったかな、うろ覚えだなとなったら導出するのが良いと思います。 化学に関しては電気分解の式は自分で作れます。イオン化傾向がわかれば行けるはずです。反応式を書けという問題は出ないはずなので、反応式の細かいところがわからなくても、この金属に対して水素は〜mol発生しそうだなというのがわかれば良いので、電気分解の反応式は覚えなくて良いです。電池の問題は正極と負極(陽極と陰極)が何でてきているかを覚えていないと無理です。出来れば溶液も覚えて欲しいです。電池に関してはヒントがほとんど出ないので、覚えておいた方が良いです。 深い知識を得るにはやはり理解することだと思います。理解したことは忘れにくいですからね。逆に単純暗記のものは忘れやすいです。また、用語などは何度もやって覚えていくしかないですね。イオン化エネルギーの意味を説明できるかなど結構基本的なことを聞いてきたりもするので、基本用語の意味を覚えることも怠らずに頑張って下さい。また、引っかけもたまにありますので、注意深く読むことも必要です。 やってないところを忘れるのはみんな一緒ですので、そんなに深刻に考えなくても大丈夫です。 東工大の化学はほぼ全ての分野から出題されるので、直前に過去問をやりまくれば、しばらく触れていない分野もなくなると思います。それでも本番にど忘れしてしまうことはあると思います。私は本番でど忘れして一問落としました。ですが、そこで焦らず他の問題を冷静に解くことが大事です。結構そういったメンタル面も点数に関係すると思いますので。 あとは絶対に覚えるんだ!と思って覚えて下さい。単語帳をボーッと眺めても覚えられないように、ただなんとなくやっていると効率が悪いです。残り少ないので、今解いている問題を次いつ復習できるかわかりません。もしかしたら入試までもう見ないかもしれません。ですから、絶対に覚えてやるんだ!という気概を持って勉強して下さい。個人的にはこれが最も重要かなと思ってます。 長文失礼しました。
東京工業大学第三類 たまちゃん
39
5
不安
不安カテゴリの画像
数学が出来るようにならない
初めまして。 東北大学理学部のゆーすけです。 数学科として、数学のアドバイスをさせていただきます。 まず、数学は2次試験に標準を合わせるべきです。 横国を志望校に決めているのであれば、基礎問題精巧だけでは足りません。標準問題精巧などが必要です。 あなたは数学が短期記憶になっていませんか。 どの参考書でも、一周しただけでは覚えられないと思います。そこで、おすすめの勉強方法があります。 付箋勉強やシール勉強です。 この勉強法は「東北大学現役合格するには」で紹介しているのでそれを見てみてください。 二周三周してやっと知識は定着していきます。 模試について。 あなたは模試をどのような位置づけで活用していますか。点数と偏差値で一喜一憂して模試直しを忘れていませんか。 模試を有効に使えるかどうかに模試直しのレベルの高さが関わってきます。模試直しでは大問ごとに何が出来なかったか、できてる気がしていた問題を見ていくべきです。 見つけた苦手は土日や長期休みの時間がまとまって取れる時期に徹底的に潰していきましょう。 数学は入試で点差がつく大事な教科です。 苦手は早いうちに潰してしまいましょう。 また、2次試験の傾向を知ることが大事です。 数Ⅲがたくさん出ているようなら数Ⅲを進めないと効率が悪いです。数Ⅲの問題は特に教科書の問題レベルと比にならないくらい難しいです。 数Ⅲの全範囲を授業で終わらせていないならなおさらやった方がいいです。軽い予習でいいので、教科書レベルの問題を解けるようにしておきましょう。 2次試験の問題が解ければ共テは取れるので、共テ対策はまだしなくて大丈夫です。 特にⅡBはパターン化されているから共テの問題に慣れればそのうち点数は上がっていきます。数学は2次対策を重点において勉強していきましょう。 そこで今はもう少し難しめの問題(標準問題精巧や青チャートなど)を解くべきです。わからなかったら基礎問題精巧に戻りましょう。 全統は技術力が試されるので単に解法暗記では解けません。 だから初見の問題に当たったときにどうやってアプローチしていくのかっていう力を鍛えていくべきです。 また、模試直しが大事です。 どこで引っかかったのか、どういうアプローチで解いてるのかを模範解答で確認しましょう。 その後類題を基礎問題精巧などで探して解いてみましょう。文章題で書かれ方が違ってても必ず類題はあるはずてす。 大事なのは初見の問題文をどうやって自分の知っている形まで簡単に出来るかです。 その力を模試直しで養えてみてください。 その後標準問題精巧などで少し難しめの問題を解いた時に正しくアプローチできるか確認しましょう。 できなければまた基礎に戻ります。 まとめると、 いきなり標問で力試し→できなかったら基礎問に戻る また、模試をやったら 模試直しで苦手を発見→基礎問で類題確認→標問で力試し その繰り返しですね。 模試は自分の到達レベルを図るための最高のツールです。 初見の問題に当たったときにどうアプローチできるか。 その解法が見つかった時の開放感、ぜひ味わってみてほしいです。 受験まで続くであろう模試が、あなたにとって有意義なものとなりますように。 応援してます。
東北大学理学部 ゆーすけ
26
3
理系数学
理系数学カテゴリの画像
慶應経済に受かった方回答よろしくお願いします🙇‍♂️
こんばんは、出来る限り質問にお答えします。 まず、熟語に関してですが参考書を用意する必要はありません。「熟語をなるべく多く覚える」というのは、正直に申しますと、コストパフォーマンスが悪いです。更に、友人の中には英検一級を所持していながらも思うように英語で得点ができない人もいました。原因は「熟語の問題の選択肢が似通っている」からです。本文の空所補充などの問題で、最後に2択までは絞れますが、「どっちもあてはまる」というオチは割とあります。 それよりも、数学の苦手を克服するべきでしょう。A方式では、数学が得点できないと、まず合格できません。私が受験した時にも、数学の試験が終わり、小論文を受けずに帰る人が何人もいました。 単語帳についてですが、私の場合は一冊も使いませんでした(塾の方針)。過去問や、日々の演習などを通してわからない単語を調べる。その後、取り組んだ問題を音読を繰り返すことで、文章ごと覚えるようにする。 これを繰り返せば、単語帳要りません。しかし、だからといってこれまでにあなたが覚えた単語が無駄になることはありません。これから勉強していくなかで、「調べる手間」がないのですから、私の受験期よりもはるかに効率の良い勉強ができるはずです。 最後に、慶應経済の英語は割と同じ単語が何年か続いて出てきます。過去問をやっていても、2、3年連続して、同じような単語が出てくることはよくありました。 また、数学の苦手は夏までに克服しましょう。過去問をなるべく早くから取り組み、免疫をつけ、冬には過去問でない参考書や、他大の入試などを用いて演習をし、直前期には直近2年程度の数学を真剣に取り組む。これで十分です。 例えば、大学への数学などの問題集から6問抜粋して、毎朝1時間で解く(私の実践した方法)などをすれば、時間が足らないと言われる数学の試験も十分に戦えます。 これで本当に最後に。 今、本気で「現役慶應経済」を目指すのであれば、今の志望校を「東大、京大」にでもしておくべきです。それと、高校の偏差値ほど、どうでもいいものはありません。私のクラスには通信制の学校に通ってた人や、家から近いからという理由で偏差値50の高校に通っていた人がいます。彼らに比べたら、あなたはきっと恵まれていますよ。
慶應義塾大学経済学部 こすけ
17
5
英語
英語カテゴリの画像
文系数学を得意にするには
①「この問題にはこの解法だといった定石がおさえられていない」のが原因か? →おそらくそうです。 ②どのようなことをすればいいか?学校で配られた共通テスト対策用の問題集でいいか? →いいとおもいますが、やり方が肝心です。 ③数学Bの選択分野を確率分布にするのはどうか? →今数列とベクトルに関する知識が全くないというわけではないなら、変えない方が賢明だと思います。 ①について。大学入試共通テストの試行調査の問題を見たところ、おおかたセンター試験と変わらないなという印象を受けました。2つの試験に共通する必要な能力は、高校数学の基本〜標準的な問題に素早く正確に答える能力です。 それをするには、やはり典型問題の解法の記憶が不可欠といえるでしょう。たとえば、教科書にも載っているような公式や定理を正確に覚え(導出の説明ごと覚えたいが、難しいなら最悪丸暗記もやむなし)、どういう場面で使うかも知っておきましょう。公式や定理では無い場合でも、典型問題の解法はまず初めに何をするか記憶してください。このように、問題を読んだらすぐ考えて手が動くように「定石」を抑えることが、共通テストの数学には必要です。 共通入試特有の「思考力を試す問題」も、結局は知っている知識を使いこなせるかを問うてるに過ぎず、指導要領を超えることは当然ないですから、「定石」をしっかり押えた上で、よく読んで典型の問題とどこが同じなのか、どう言い換えられているのかを考えるようにしましょう。やはり全ては、パターン解法の記憶からスタートだと思います。 ②について。では、どのようにすればそれが効果的に得られるかですが、やはりたくさんの問題を解いて覚えるのが一番の近道であると考えられます。問題集は一定の難易度があればなんでもいいです。学校の問題集に加えて、共通テストの試行問題と模試、予想問題、センター試験の過去問なんかも練習材料になるでしょう。 しかし、それらを闇雲に何も考えずに解いて丸つけして、では、先程述べたような「定石」に記憶は難しいです。ですから、問題ができなかったときは、何をどのように知っていたら解けたのかを考える癖をつけましょう。「○○を求める問題では△△が必要だから、初動で□□する」といったように日本語で整理しておくのもいいでしょう。 そして、時間に余裕があるなら、それを覚えた上でもう一回解答などを見ずに解いてみましょう。そういったことを繰り返して確実に定着させてください。また、それによって計算力が上がることも見込まれます。 ③について。数列やベクトルを、基本のところから全く知らないならまだしも、今から確率分布にするのは得策とは思えません。 ①でも述べたように、共通テスト数学は前提となる知識を知っているのがスタートラインです。典型解法などがそれです。受験する分野を変えるということは、それを一から覚え直すということになってしまいます。いくらできないとしても、さらに知らないものに手を出して、出来るようになることは稀です。 以上のように、知らなければならない事項をしっかり覚え、それを意識しながら十分な量練習すれば、点数は上がるはずです。他の科目の進捗にもよりますが、数学はしっかりやれば安定すると思われますので、まずは志望大学のボーダーを目指してください。参考になれば幸いです。頑張って!
名古屋大学法学部 しゃぶや
17
6
文系数学
文系数学カテゴリの画像
このまま理系に進むのは出来るでしょうか
こんにちは。 現在東北大学工学部に所属している者です。 数学をそれほど勉強されているのに結果が出ない原因として考えられるのは、勉強法の問題ではないかと思います。 具体的に言えば、数学を暗記しているのではないでしょうか? ある問題を完璧に解説できるようになっても、暗記しているだけならその問題(もしくはそれと似ているもの)しか正解できるようにはなりません。 暗記を否定する気はありませんが、数学を暗記するというのは例えば確率の問題で一つ一つ数えているようなものだと思いますので、非効率的です。 ご質問は、このまま理系に進んでもいいのかということでしたが、東北大学の場合ですとご存知の通り二次試験でも理科が二科目ありますので難しいかもしれません。 国語と地理は高得点を取られているようですし、文転を考えてもいいと思います。 もし、必ず理系に進みたいということであれば志望を下げるというのも手です。 東北大学の理系は基本的に大学院に進学しますので、大学院の入学試験を受けてもいいでしょうし、三年次などに他大学から編入されている方もいますので悪い手ではないと思います。 また、もう一度浪人できるかということも重要だと思います。 最後になりますが、大学受験はただの通過点でしかありません。 これからの人生が大きく変わるかもしれませんが、自分の行動力次第でどうにかなることも多いです。 あまり気負い過ぎずに頑張ってください。
東北大学工学部 柿ピー
21
2
不安
不安カテゴリの画像