UniLink WebToAppバナー画像

物理基礎の公式を覚えるべきか

クリップ(0) コメント(0)
11/24 22:49
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

さかな

高3 長野県 信州大学教育学部(51)志望

物理基礎の等加速度のところの公式を覚えられません。 いつもグラフで解いてしまうので時間がかかるし、 自由落下とかも全部等加速度ので解けるとは思うので覚えるべきなんだとは思いますが、覚えられないんです。 覚えなくても何とかなりますか?

回答

おかけ

大阪大学基礎工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
数学2Bが得意であるのならば微分積分を用いて理解するのはいかがでしょうか? 加速度=a(定数) これを時刻tで積分すると 速度=at+C (Cは積分定数) t=0の時の速度をv'とするとこれを代入して C=v'なので 速度=at+v' となります。 同様に速度をtで積分すると 位置=1/2at^2+v't+C t=0の時の位置をx'とするとこれを代入して C=x'なので 位置=1/2at^2+v't+x' を導出できます。 自由落下についてはv'=0とおけば良いでしょう。 位置、速度、加速度の関係式については速度の式と位置の式からtを消去して導出できます。 無意味に覚えるよりはちゃんと意味を理解した方がいいと思います。詳しい解説は先生に聞いたり、ネットにもあったりすると思うので必要ならば調べてください。

おかけ

大阪大学基礎工学部

2
ファン
4
平均クリップ
4.5
平均評価
メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

理論について
まずは当然ですが公式を暗記しましょう。この時に文字だけで覚えるのではなく日本語で覚えるのがオススメです。例えば運動方程式だったら物体に働く力は質量×加速度で求められるみたいに。(実際は物体に働く力によって加速度が生まれるので因果関係が逆ですが。) 次に公式の使い方を知る。 加速度を求める問題が出たとしましょう。これだけ言われれば単位時間あたりの速度変化、力を質量で割る、円運動であれば半径×角加速度の二乗などいくらでも求める方法はありますが、それぞれ使える場面が異なりますよね。 1つ目でしたら速度と時間が分かっている時、2つ目でしたら物体の質量と力が分かっている時、3つ目でしたは円運動していて半径と角加速度が分かっている時。(円運動だったら速度と角加速度や半径と速度の2つでも加速度は出せますね。) このように公式はたくさんありますが必要な情報がそれぞれ異なっているので何が与えられているからどの公式を使うのか判断する必要があります。 これは二次試験レベルの問題集を使うよりはセミナー等の基本的な問題集で多くの問題を解く上で身につける力だと思っています。 最後に公式の使える条件に注意する。 例えば有名なところですと2物体の運動量保存則は系に外力が働かないことが運動量が保存する条件ですが、これを意識せずに公式を使って間違えている受験生が多いように思います。 これは教科書に書いてありますが、問題を解きながら間違えた時にしっかりと復習をして身に付けていくのが1番だと思います。 長くなりましたが高校物理は数学と似ています。基本的な問題に関しては解き方を理解した上で暗記してしまうぐらいに復習をして似たような問題が出題されれば即答できるようにしましょう。実際数学よりも問題のバリエーションは少ないため同じような問題は何度も出題されます。
大阪大学工学部 T.T
2
1
物理
物理カテゴリの画像
円運動の公式
ぱりんさん こんばんは!東京大学理学部物理学科3年の林です。 単振動に関連する公式は複雑ですよね。高校物理の範囲だと、実質的に暗記することが求められていますが、手段がないわけではありません。 その手段というのは「微分・積分」です。 理工学部志望ということで、多少は理解されているかもしれませんが、位置を時間で微分すると速度、速度を時間で微分すると加速度になります。数学IIIの発展内容(コラム)として教科書に載っているかもしれません。 単振動の公式 x=Asinωt を時間微分すると dx/dt=ωAcosωt となりこれは速度です。 さらに時間微分すると d^2x/dt^2=-ω^2Asinωtとなり、これは加速度の式になっています! こんなふうに、微分積分の考えを用いることで公式の暗記は省略できます。単振動は、初期条件によって三角比の部分がsinだったりcosだったりしますが、そのどちらでも対応可能ですよ。 不明な点があったら、遠慮なく聞いてくださいね!
東京大学理科一類 Shunsuke
21
0
物理
物理カテゴリの画像
電磁気の理解の仕方(あと重心速度について)
初めまして ①電磁気の原理原則の深い理解についてですが、ある程度慣れているのであれば駿台文庫の【新物理入門】を読みまくればいいと思います こちらは受験参考書でありながら高校物理の大学物理の架け橋(大学初年度に習う物理に片足突っ込んでる)となっており、高校物理で曖昧になっているところを、高校数学でわかる範囲で説明しています 電磁気の根底の原理原則理解には、大学初年度での数学知識がないと説明が非常にややこしく、受験勉強もうしなくてももう受かるわっていうほどのレベルでない限り今はやらないほうがいいので、新物理入門に書いてあるレベルの理解を目標とするのが良いでしょう ②部分的な説明になってますがそうですね 2物体1,2に対して 物体m1にかかる外力をF1、物体m2のほうをF2(どちらもベクトル)とすると、それぞれの運方の和よりd(m1v1 m2v2)/dt=F1 F2 (vもベクトル) 運動量の和をp(ベクトル和)とすると、dp/dt=F1 F2…①となりますね また、重心の座標はrG=m1r1 m2r2/m1 m2 (rは位置ベクトル)なので、sinさんのいうとおり微分して vG=m1v1 m2v2/m1 m2=p/m1 m2…② (重心速度) ここで①,②より、外力が存在しないとき、p=cost(定数)となり運動量が保存(これが運動量保存則の原理) よってvGもcostなんで、速度一定ということですね この説明も新物理入門に載っているので、ぜひ書店で見ていただいて、気に入れば購入をお勧めします💪 残りの受験勉強も頑張ってください🙏
早稲田大学先進理工学部 エムジェー
3
0
物理
物理カテゴリの画像
理科科目を固めるには
こんにちは、理工学部で主に物理学を専門に勉強している者です。 もし化学が安定しているようであれば、駿台文庫の「原点からの化学」シリーズはおすすめできます。それなりの化学の知識があれば、その知識をさらに掘り下げつつ、文字通り「原点から」展開されゆく化学体系に感動するでしょう。特に「化学の計算」、「無機化学」に関しては、問題を解くにあたってすぐに勉強効果が発揮されると思います。 それでは物理に関して、おすすめの参考書などを紹介すると同時に、演習するにあたって心がけると良いことを詳しく解説させて頂きます。 今でこそ物理学を専門にする程度には物理に詳しいものの、自分も物理には苦労した身です。かなり説明が長くなってしまいましたが、自分の物理の勉強経験を踏まえ、しっかりと書きましたので最後まで読んでいただけると幸いです。 すでに教科書レベルの物理を勉強されたならご存知の通り、物理学は森羅万象をなるべく簡潔な形式で記述しよう、という学問です。例えばすでに勉強されたであろう力学であれば、ニュートンの運動の三法則がこの簡潔な記述に当たります。しかし、 「加速度の大きさは,力の大きさに比例し,質量に反比例して, m →a = →F が成り立つ。」 とだけ言われて、そうかそうかと理解できる人はいません。物理における演習は、こうしたあまりにも抽象的に記述された法則を、実際の問題に当てはめることによって具体的に理解しようとする営みであることを心掛けて下さい。 そこでまずは簡単めの問題集を使って多くの演習を積みましょう。とは言えあまりに問題数が多くては疲れます。エッセンスを既にある程度勉強されたのであれば、同じ著者の出している「良問の風」はおすすめです。必要にして十分な基礎演習ができるような問題のチョイスがなされています。 演習時に心がけると良いことを、力学分野を例に取ってお話します。 先述の通り、力学では、ニュートンの運動の三法則が基盤にあります。第一法則から第三法則まで順番にそれぞれ、 1.慣性系存在の主張 2.運動方程式 3.作用反作用の法則 です。 特に問題で直接使うのは2と3でしょう。問題文を熟読しましょう。与えられた装置に関して、 ・与えられた物理量は何か?その定義は?単位は? ・そしてそれはスカラー量か?ベクトル量か? ・考えるべき物体系はどれか? ・座標はどのように取るか?(物体のx座標、時にはy座標を定めましょう) ・それは慣性系か?(非慣性系なら慣性力の考慮が必要です) ・考える物体に働く力は?(時には第三法則を使う必要がありますね、使う必要がなくとも常に作用に対する反作用が何か、答えられるようにしましょう) ・物体が質点ではなく剛体の場合、物体に働く力のモーメントは? ・そこからわかる運動方程式(第二法則です)or力のつり合いは? ・剛体の場合、力のモーメントのつり合いは? ・定量化にあたって使うことのできる近似は?(物体を質点ととらえる、糸を十分軽いとする、角度は十分小さいとする、これらは全て近似です) 徹底的に考えていきましょう。 物体が質点の場合、必ずしも力が釣り合って静止、または等速運動しているとは限りません(一方剛体の場合は力のモーメントが釣り合うケースしか基本出題されません、釣り合わない際の剛体の具体的な挙動を高校範囲では扱いません)。運動の第二法則により、力を質量で割った分の加速度が生じます。加速が分かればそこから速度と位置が時間の関数としてあらわされます(エッセンスには v = v₀ + at をはじめとする三つの「公式」が載っているはずです)。すべての力学問題に関して、a-tグラフ、v-tグラフ、x-tグラフを書いてみると良いでしょう(これらのグラフをしっかりと書くことができれば、実は「公式」を覚える必要はありません)。 しかし、複数の物体が同時に動いたり、物体が複雑な経路を経て移動する場合は、物体の位置や速度、加速度を時々刻々と追うことが困難です。そんなときには、物体の運動開始点における状態量と、運動終了点における状態量とを直接結び付けることができる保存量がありましたね、これを用いた定理がずばり運動量保存則と、エネルギー保存則です(これらは第二法則から導かれる定理です)。これを使いましょう。運動量と力積の関係、仕事と運動量の関係もしっかりと押さえましょう。 こんな風にして、物理の包括的な体系を念頭に置き、問題集に載っているそれぞれの問題をしっかりと吟味し、物理公式や定理の証明の過程に具体的な問題をそのまま適応するイメージで問題を解くことをお勧めします(←シレっと書きましたがここ一番重要です)。決して「なんとなく」公式を当てはめて、それで答えがあっていればそれでいいや、といった了見は持たないことです。それをしてしまうと少し問題が複雑になったときに使うべき公式が分からなくなり、困ります。物理の問題が解けるのには、整然とした物理体系に根差した、解けるなりの「必然性」があります。使える公式も、問題ごとに「必然的に」定まることを意識してください。決してテキトーに公式を用いて「偶然」答えを当てるゲームではないということです。 このように一問一問に吟味を重ね、一つの問題について「全て」を説明できるようになってみてください。そうして精力的に解いていくと疲れるでしょう、時間もかかります。当然問題集にもそんなに詳しい解説は載っていません。しかしこれをやり終えたとき、あなたの物理の学力はそれだけでも相当なものになっています。結果として漫然と公式を当てはめて学習するよりも勉強時間に対する学力向上のコストパフォーマンスは高いでしょう。 一応補足しますが、これは決して試験会場でも問題をしっかり吟味し、時間をかけてジリジリ解け、ということではありません。むしろここまで書いてきたような「じっくり」とした解法ではなく、問題集の解説に乗っているような「あっさり」とした解法が好ましいでしょう。しかしそうしたあっさりとした解法の背後には、そのような簡潔な解法を支える物理の壮大な体系があることを理解していただきたいです。深い物理に対する理解があってこそのシンプルな解法、ということでございます。 ここまでの内容を要約しましょう。物理の深い理解に根差した「冗長な解法」と、試験会場でサッと使える「簡潔な解法」、この両方ができるようなトレーニングを、問題演習を通じて日頃の学習の中で精力的に行ってください。 ここまで書いておいてなのですが、これらはあくまで物理の教科書に書いてあることをしっかりと理解した前提でのお話です。問題を解いていて、あるいは解説を読んでいてわからないこと、忘れていることがあればまめに教科書を読み直し、実際に自分の手で定理や公式の証明ができるようにして下さい。 こうして物理の「本物の基礎力」が身につけばあとは話が早いです。志望校の過去問に挑戦するも良し、少しレベルアップした問題集(「名問の森」や「重要問題集」、「標準問題精講」、「難問題の系統とその解き方」など)から自分に合ったものを見つけ演習するも良し、どうするかはその時また考えると良いかと思います。 最後に物理をさらに深く理解するのに役立つ、いわゆる「微積物理」の紹介をさせてください。「微積物理」と言っても、ただの数Ⅲレベルの高校数学を用いたごく一般的な物理です。使う数学も微積に限らず、ベクトル、二次曲線、指数対数関数、三角関数など様々です。「微積物理」は特に、 ・位置、速度、加速度の関係の理解 ・円運動 ・単振動 ・ケプラー問題 ・クーロン則及び電場電位の理解 ・コンデンサーやコイルがらみの回路問題 ・右ねじの法則 ・フレミング左手の法則 ・導体棒問題 ・荷電粒子の運動 ・交流理論 ・熱力学の状態変化 ・その他保存則がらみの問題全般 ・エネルギー収支問題全般 などなど、多くの事象・問題の理解に役立つでしょう。興味に合わせて勉強すれば、さらに物理の問題を鮮明に捉えることができます。例えば運動方程式を立てるだけで、エネルギーの収支が、保存が、勝手に見えてしまうようになると言った具合です。 簡単な参考書から難しい参考書まで、私が知っている範囲で一応紹介しますね。括弧で大体のレベルも書いておきます。 簡単 ↑ ・微積で楽しく高校物理がわかる本 (レベル0) ・微積で解いて得する物理 (レベル1) ・秘伝の微積物理 (レベル1) ・微分積分で読み解く高校物理 (レベル1) ・大学入試完全網羅 物理基礎・物理の全て (レベル2) ・はじめて学ぶ物理学 (レベル2) ・新・物理入門 (レベル3) ・理論物理の道標 (レベル3) ↓ 難しい ちなみに私は新・物理入門を穴が開くほど読みました。 長々と書きましたが、質問者様が以上の内容を参考にし、物理の学習に役立て、物理を得点源にすることを願います。頑張ってください。
慶應義塾大学理工学部 Euclid
4
2
物理
物理カテゴリの画像
最強の物理の勉強方
こんにちは!物理の勉強について一番良かった勉強法ということですが、まず言っておきたいのは回答者の「僕は〜をしてから実際に問題を〜」といった質問者さんが期待しているであろう答えを聞いてもおそらく意味はないということです。 仮に天才回答者が「教科書をただ読んで模試を解くのが一番良い」といったとしてなるほどと実践しないでしょうし、うまく行かないのは明白です。 では結局どうするか?自分が出来そうな範囲で今の勉強法とは違うそれっぽい回答を選んで、合格者の意見だからと信じて疑わなくなります。大事なのは判断を依存しないことです。 一応僕の勉強法(一番良いかどうかは誰にもわからない)を言っておくと「極力覚えないこと」です。 例えばリードアルファには加速度をαとした時の位置と速度の公式のようなものが大量に書いてありますが、そんなものは無視しました。一瞬で出せるからです。位置を時間で微分したものが速度でそのまた微分が加速度なんだから、微分すればいいじゃんとなるわけです。運動方程式から出ることを「〜の法則」とかそれっぽい名前を付けてることも多いです。定義とか決まり事さえ覚えれば高校物理は数学だけで理解できます。 あくまでこれは僕が楽するために行った勉強法であって普遍的に良いとは言えません。しかし、迷走しているのであれば騙されたと思ってやってみてください。そして合わなかったら一瞬で切り捨ててを繰り返し、自分だけの方法論を蓄積していってください。その極地にあるのが「一番良かった」勉強法です。
北海道大学工学部 りゅう
5
2
物理
物理カテゴリの画像
微分の応用
X(t)に関して 速度dx/dt=vとする。…① すると、加速度d^2x/dt^2=d/dt•(dx/dt)=dv/dt …② となる。 次にt(x)に関して dt/dx=1/(dx/dt)=(①を用いて)=1/v…③であり、 d^2t/dx^2=d/dx•(dt/dx)=(③を用いて)=d/dx•(1/v) (これは合成関数の微分に相当するので) =-1/v^2•dv/dx=(vの変数としてのxはかなり扱いづらいので、tに変数変換して)=-1/v^2•dv/dt•dt/dx となる。②、③を用いて変形すると、 d^2x/dt^2=-v^3•d^2t/dx^2 となる。あとは①を代入して、答えは {}=-(dx/dt)^3となります。 あってるかな、、?なんにせよこうゆうのにチャレンジしてみる姿勢は素晴らしいと思います。
東京大学理科一類 Atom
2
2
理系数学
理系数学カテゴリの画像
公式の覚え方
結論から申し上げますと、公式を覚えようとする人は失敗します。 もちろん、センターレベルやセンターレベルの試験しか出さない大学なら問題ありません。頑張って覚えてください(覚え方は知りません) しかし、難関大学を目指したいというのなら、公式というのは、導出ができて初めて使えるものになります。難関大学では、少し捻った問題を出したり、京大のような独特な問題を出したりするような大学もあります。そんな時に導出の仕方を分かっていれば、導出の過程で使われる技術を使ったり、導出の途中の過程を変えることで解くための第一歩に繋がります。 もちろん、運動方程式や、大学生レベルの数学公式になると覚えるしか仕方ないです。そのような最低限覚えなきゃいけない公式は決まっています。(それは教科書に導出が載ってないはず)たぶんそれだけを覚えるのは簡単な話です。あとの公式は導出を覚えなきゃいけないのですが、 「じゃあ、導出はどうやって覚えるの?」 って思いますよね。導出というのは手順です。手順を覚えるのは頭の中で思い描くことができるので、公式を覚えるよりは楽に覚えられるはずです。何回も導出をして頭の中に導出を叩き込みましょう。「今更そんな基礎をやってられない!」と思ってる人もいるかもしれませんが、応用をやるよりも基礎を完璧に固める方がよっぽど重要だということも覚えておきましょう。当たり前ですが、基礎があってからの応用です。基礎が固められると応用を解く力は以前よりもグッと伸びてるはずです。頑張ってください。
北海道大学工学部 情弱エレクトロニクス
7
1
不安
不安カテゴリの画像
力学の解き方
まず絶対に図を描いて、力の矢印を描きます。何か物体と接触がある部分は必ず力が働いているので、それを意識すれば矢印を忘れることはなくなります。 そこから、任意の直交座標に矢印を分解して、平行なものだけで等式を立てます。ここまでで大体2式できます。運動の問題で未知数がさらにある場合、運動量保存なのか、エネルギー保存則なのか、どちらの問題か判断して3式目を立てれば、大体解けるイメージです。 高校レベルであれば、エネルギー保存は熱エネルギーや音のエネルギーが発生していなければ、ほとんど成り立ちます。実際は全て考慮すれば成り立つのですが、問題で熱や音のエネルギーまで取り扱うことはまず無いと思います。おおよその目安ですが、摩擦や衝突がなければほぼ使えると思っていて問題ないかと思います。摩擦が明確に表されているときは、それも考慮に入れればエネルギー保存で解けます。摩擦はよく問題で見かけるので、例外的ですが、出来た方が良いですね。 運動量保存は考えている系の中だけで運動量のやりとりが行われているとき成り立ちます。これもおおよその目安ですが、重力などの保存力が働いていない方向ではだいたい成り立つと考えて問題ないかと思います。 力学は慣れれば大変点数の安定しやすい教科なので、是非練習して解けるようになって下さい!応援しています!
大阪大学工学部 トリウム
20
1
物理
物理カテゴリの画像
物理の勉強法
勉強方法について、物理の問題を解く際の基本的な考え方を紹介します。 それは、 「原則式を書いたらあとは数学の問題」 です。 原則式というのは、 力学であれば、運動方程式やモーメントの式 回路の問題であれば、回路方程式や電荷量保存則 というもののことです。 原則式がめちゃくちゃ大事であるということです。 ただ、僕としては、受験物理の問題を特にはこの考えだけでは難しいと思っていて、受験物理を徹底するには、 「コツ」 というのも必要だと思っています。 コツというのは、 力学であれば、力の図示、力の分解、次元解析など、 電磁気であれば、左手の法則を左手を使わずに即判断する方法、保存則のうまい使い方(言葉では伝わりにくいですが申し訳ございません。) などです。 頑張ってください、応援しています。
京都大学工学部 らじあん
1
1
物理
物理カテゴリの画像
物理が全くわからない状態
慶應義塾大学経済学部 kp様の過去回答記録より、 「物理のセンスのいい人などは、公式の導出の際に本質を理解して、いろいろな問題に応用して問題が解けます。 しかし、普通の人は一発目から本質はわかないので、公式を暗記して、それを使って問題を解きながら徐々に本質を理解していくのがいいと思います。 オススメはまず教科書をじっくり読んで公式を理解し、良問の風や名門の森をやって問題や公式に慣れていき、自分で公式の導出ができるまで練習するのが良いと思います。」 東京工業大学第三類 たかゆー様の過去回答記録より、 「物理ができない理由としては ①イメージがつかめていない ②単純に演習量が足りない ③応用力がない といった感じだと僕は考えています。 ①に関しては、物理を学ぶ上で最も難しい部分です。そこで僕がオススメするのが秘伝の物理という参考書です。この参考書は、かなり分厚いですが内容がすんなり入ってくることに加え、イラストや動画解説もあるのでかなりイメージがつかめます。秘伝の物理でイメージがつかめたら問題演習に入っていきましょう。 ②に関しては、物理のエッセンスでひたすら演習を積んでいきましょう。同じ問題は3回解くをモットーに頑張りましょう。 ③に関しては、名門の森という参考書を解いていけば身につきます。名門の森をマスターできれば入試物理で解けない問題はほとんどなくなるかと思います。まあ捨て問は別ですが笑 (質問者さんがどこでつまずいているのかはわかりませんが、おそらくイメージがつかめていないのと、演習量が足りないのではないかなぁと思います。) 問題を読んだ瞬間にあ〜こうすれば解けるなぁって思えるようになりましょう笑」 「エッセンス、体系物理がある程度完成しているとの事なので、過去問に入っても問題ない状況ではありますが物理で高得点を狙うためにはもう少し演習が必要です。 一応分野別物理以外の参考書は解いた経験があるので、実際に使って見た感想を交えながらおすすめしていこうと思います。 まず、一番おすすめなのは標準問題精講です。 この参考書は、簡単に言うと難系をぎゅっと圧縮してわかりやすくした感じです。 難系を解かないと高得点が取れない時代は終わりつつあるので、難系を使わないで標準問題精講を利用しましょう。 また、電磁気分野に関しては名門の森が一番いいので、時間があれば電磁気のみ名門を使っていくのがいいかと思います。 もし仮に、それでも時間に余裕があるのならば新物理入門の力学分野を一通り読んで理解しておくと、物理で九割は下回らないようになってきます。」 京都大学農学部 剛様の過去回答記録より、 「物理に限らず公式は暗記して理解するのではなく、理解しようと頑張ったら自然と暗記していたという順番が好ましいです。 例えば、運動方程式F=maですが単にこの形を覚えてしまえばつかえることは使えます。しかし、力Fが同じ状況下で質量mが大きければ大きいほど加速度は小さくなる、すなわち重いものは動き始めが遅いという実際に経験できる通りの理論だと分かります。 これはこう覚える、ということをする時も私自信ありましたが、京大物理を見据えて、どうしてそうなるのかを追求することが入試の得点に繋がります。学校のテストに言及すれば公式を覚えているのに点が取れないのは単に問題演習量が足りない可能性があります。使っている問題集のテスト範囲の問題は分かるまで何度も解いて、解説を読み込む作業を繰り返しましょう。」 虎の威を借る狐の如く、このような形でしか力になってあげられないことについて、大変なる不甲斐なさと申し訳なさを感じます。こんなことしか言えませんが、ぜひとも頑張ってください。
北海道大学法学部 たけなわ
30
2
物理
物理カテゴリの画像