UniLink WebToAppバナー画像

数学 解き直し」の検索結果

やり直しの仕方
数学の問題をやり直す上で、解答や式変形を一字一句覚えるなんていうことがな必要ないことは言うまでもないことだとおもいます。 なぜなら、数値、条件が全く同じ問題なんて人生でそう出会わないからです。 では、どうするのか?ということですが、僕が意識していた点はその問題の核となる部分を抽出し抽象化、一般化することです。 要は1から10を得てほしいと言えばいいのでしょうか? 具体的に説明すると、立体図形の問題で、ベクトルで解こうとしたけど、なかなか上手くいかなかった。 解答にはベクトルによる解法が書かれておりその解法がなかなかテクニカルで簡潔である。 しかし別解に座標を置いて計算でごり押しする解き方も書いてある。こちらの方法はなかなか、計算量が多そうだ。 こういうことがあったとします。 こういう時に、じゃあテクニカルな式変形を覚えようとしていてはなかなか数学力はつきません。 この問題の復習はいくつかやり方が考えられますが、この問題の核を抽出し一般化とは、以下のようなことです。 1.確かにベクトルのやり方もいい。なので、頭に留めておこう。 2.座標を置くやり方は計算量が多い一方、やっていることは素直である。なので、本当に思いつかなかったら、最終的に座標を置けばいいのではないか? 3.角度といった条件は出来るだけベクトルで扱うのが良さそうだ。 4.交線などは、座標を置き平面の方程式を立てて求めていくのが良さそうだ。 などなど得られることはたくさんあるはずです。 これはあくまで一例ですが、1つの問題から学べることは案外多いものです。 無作為に問題数をこなすのではなく密度の濃い演習をこなすことをお勧めします! あくまで僕個人の意見ですので、何か参考になれば幸いです。
東京大学理科一類 ゆかい
22
1
理系数学
理系数学カテゴリの画像
数学の思考力
結論から言うと、数学の問題の解法は自分で手を動かして探していくものです。大学入試の問題を解いていくなかで、問題をパッと見ただけで解法が思いつくということはあまりないです。 例えば、図形の問題だったら図を描いてみたり補助線を引いてみたり、nなどの定数が出てくるような問題だったら試しにn=1などとおいてみたり、…といった感じで自分で手を動かしながらだと、「あ、ここから解けそうかも」と解法が見えやすくなります。 さらに言うと、問題をたくさん解いていくうちに、「こういう問題のときはこうする」みたいな定石のようなものが身に付いてくると思います。 例えば、2次関数の問題が出てきたらまず平方完成してみたりしますよね。それと同じで、図形問題が出たら、座標に置き換えるかベクトル(まだ習ってなかったらすみません)を使うか考える、とか、整数問題が出たら余りを考えることが多い、とか、勉強を進めていくにつれてある程度やることは決まってきます。 大学入試の問題は、意外と普通の解き方で解けるような問題がほとんどです。「え、そんな解き方があるの?」みたいなひらめき100%の問題はめったにありません。それに奇抜な解法を要求するような問題はみんなも解けないので安心してください(笑)。 問題集で詰まってしまったら、まず解答をみましょう。「意外と普通の解法だったな」と思ったら、もう一度何もみないで解き直してみる。「こんな解法初めてみた」という問題はまず一旦解答を写してみて、何をやっているのか理解する。と勉強するといいと思います! まだ習っていない範囲も残っていると思いますが、勉強頑張ってください!
東京大学理科一類 ゆーた03
5
1
理系数学
理系数学カテゴリの画像
全国統一記述式模試
こんにちは、名古屋大学医学部医学科のメイメイといいます。 数学に限らず理系科目はどれも「理解」の科目です。 数学の問題を解く上でとにかく大事にして欲しいのは、公式を使う際に「なぜその公式を使うのか?」、説明を書く際に「なぜその説明が必要なのか?」を自分自身で理由を言える状態であることです。 もしこれができてないと、単純に問題が解けないorなんとなくだけど解ける、という状況になってしまいます。これが一番良くないです。 「なぜこの公式を使うか」「なぜその値を出す必要があるか」など、数学で解答を書く際に、その解答すべてを自分で理由説明できるようにすれば、どんなに捻られた問題でも対応出来るようになるはずです。
名古屋大学医学部 メイメイ
3
2
文系数学
文系数学カテゴリの画像
数学の勉強の考え方
こんばんは、名古屋大学医学部のファルコンといいます。 なぜ?を意識して解けてるのは素晴らしいです。その調子で頑張ってください👏 さて、過去問になると解けなくなってしまう、という悩みですがおすすめの解き方として、逆算して解くという解き方してみてはどうでしょうか? この結果Aを得るには何が必要?→Bが言えればいい じゃあBを言うには何が必要?→条件Cを使えばいい など、論理展開を後ろから考えてあげれば想像しやすいですよ。 結局のところ数学というのは 解説を読む時→「なぜその式を使うのか?」「どうしてそういえるのか?」 自分で解答する時→「何が言えればいいのか?」「この与えられた条件はどこで使うのか?」 これを徹底していけば、必ず解けるようになります。 解説を読む時に「なぜ?」を意識して読むことは出来ているので、今度は自分の解答する時に欲しい結果から「何が言えればいい?」というのを考えてあげてください。 闇雲に解き進めるのではなく、根拠を持って解くことで自分の解答の何がいけなかったか?が見やすくなります。最初は間違った根拠スタートでいいので、根拠を持って解くことを意識してみてください!
名古屋大学医学部 ファルコン
28
9
理系数学
理系数学カテゴリの画像
数学について
初めまして。rockyyyと申します。 数学の勉強法において、最も重要なことは解法を見ながら理解することであると思っています。一度間違えた問題の解法を完全に理解しないままにしておくと、同じ問題に何度向き合っても解けないままです。なので解けなかった問題に関しては、解説をよく読み、理解することを重要視すると良いと思います。 具体的にどのようなことをすればいいのかというと、僕は解説を最初から最後まで逐一理解しながら読み進めていくことが良いと思います。 例えば、 「ここで、次のように式変形する。」と言ったような文言が出てきた場合、「なんかわからんけど、そう式変形するのね」と考えるのではなく、「なんのためにその式変形をするのか。その式変形でなんの得があるのか」ということを考えるということです。そうすると、「この式変形をすることで、このような操作が可能になるのか!」とか「こう式変形することでこの法則が使えるようになるんだ!」などの発見があるのではないかと思います。それを繰り返して、その問題の解法を完全に理解すると、その問題に対してだけでなく、似たような問題にも同時に対応できるようになると思います。「ここで、この法則を使いたいから、前学んだみたいにこうすることで・・」と言ったような感じで対応できてくるのではないかと思います。僕はそうして学んだ知識をノートに書き留めておき、チラチラ日常的にみるようなことをしていました。 そうすると、実際に数学において、未知の問題(自分が解いたことのない問題)に対しても、その問題を解くための様々な手法を思いつくようになり、それを使って解くことができるようになりました。成績も伸びて、数学がより楽しく、そして勉強が楽しくなったことを覚えています。 なので、数学の問題を解くことにおいて大事なことは、最初は解けなくても良いので解法を読んで、「こうすることでこの解法が使えるのか」ということや「こうすることでこの公式が使えるのか」となることが重要です。それを自分の言葉でノートなどにまとめておくとさらに良いと思います。僕は問題を解いてわからなかったため空いた空白に色ペンで「このようにすることで、この公式を使って問題が解ける」と言ったようなことを書いていました。そして今でもその手法で数学を勉強しています。 そして、話が変わりますが数学において慣れというものも僕は大事であると思っています。ある程度の知識(基本問題を一通り解くなど)を得た場合は、問題集などでひたすら演習を積んで、解説を読んでわからなかった問題に対する解法を学んで自分の言葉でインプットするということを繰り返すと良いのではないかと思います。そうすることで、この「問題見たことある!]となって、自然に解法が浮かんでくるようになると思います。そうなっていくとどんどん問題が解けるようになってくるので、数学が楽しくなり、また勉強するという好循環を引き起こしてくれると思います。 そして、理系においては数学に比重が大きい入試がほとんどなので、入試において優位に立てるようになると思います。最初の方は、まだ知識も足りていないかもしれないので全然解けないかもしれませんが、辛抱強くこうした勉強法を続けていくと、自然に解けるようになってくると思います。良ければ参考にしてください!!受験応援しています!
大阪大学工学部 rockyyy
12
3
理系数学
理系数学カテゴリの画像
数学ができない。理解できない。
こんにちは! 数学はまず公式を覚えてないと解けないんだけど、覚えててもあることができてなければ解けません!それは公式をどこでなぜ使うのかを理解することです! 例えば判別式!ただ単にこんな問題にはb^2-4acすればいいやって思ってませんか?判別式は解の個数を求める時に使いますが、これをグラフに置き換えると二次関数のグラフとx軸が交わるかどうか、交わるなら一個なのか二個なのか接するのかなどなど。その公式には意味があるからこそ公式になってます。ただ公式を覚えただけでは、今は取れても入試では木っ端微塵に切り刻まれます、、、 青チャもいい参考書です!もし青チャをやるならば解説もしっかり読んで、例題を解いたら類題もしっかりやり込んで確認してください! もし、青チャでもよくわかんないって時は教科書をやりましょう!教科書こそ1番の基礎の参考書です!例題解いて問題解いて、まず教科書レベルを確実に抑えましょう!意外と抜けているところが見つかるかも? ファイト!
東京大学文科三類 アーメン太郎
8
1
文系数学
文系数学カテゴリの画像
数学について
まず問題集に載っている標問(チャートで言えば例題ですね)を何も見ずに全て解けるか試してみてください。 ここで解けない問題が2割くらいある場合はまだ基礎が定着していないと思って大丈夫です。解けなかった問題の解き直しから始めましょう。 次に、もし上のチェックをした上で「ほとんど正解できている」という場合についてです。 数学の応用問題は上記の標問の考え方を4,5個組み合わせて作っていることがほとんどです。 つまり、基礎は固まっているが応用ができないという場合は「どの基礎事項を使うべきか見抜くことに慣れていない」ことが課題になると言えます。 その場合、以下の手順で解けなかった問題のやり直しをしてみてください。 1回目: どの基礎事項を使っているのか確認しながら問題を見直す 2回目: 答えを見ながらで構わないので、一回自分で最後まで答えを完成させる 3回目: 何も見ないで最後まで答えに行き着けるか確認する。解けなければ2回目の手順を再度行う。 数学は同じ問題を繰り返し解いて考え方を定着させることが意味を持つ教科です。 問題数をこなすだけでなく、一つの問題を突き詰めて解き考え方を理解してみましょう。
早稲田大学先進理工学部電気情報生命工学科 dice95
38
3
文系数学
文系数学カテゴリの画像
数学嫌いでも数学を安定させるには
数学の苦手克服について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、半分間違っている認識だと思います。 実は数学はある程度、暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、類題は解けないと思います。 なので、これらの基本問題はある意味では覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! これらの基本問題の考え方を初見の問題に応用する問題が真に考える問題、つまり応用問題です。 したがって、数学が苦手だと思う方はまずある程度基本問題を暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください!
慶應義塾大学理工学部 チェンパン
16
0
理系数学
理系数学カテゴリの画像
答え見てもわからない問題
こんにちは!東工大理学院のひろと申します! 数学で、答えを見ても分からない問題がある時の対処法をお伝えしようと思います! まず、教科書に載っている基本事項が抜けていないか確認しましょう。大抵の問題は基本事項を抑えることが出来ていれば、解説を読めば理解出来るはずです!それでも分からないという場合は数学の先生に聞くなどして解決しましょう。その際も、ここまでは理解できたが、その先が分からないという聞き方をするとスムーズで仕事が早いでしょう。 では、教科書に載っている基本事項を抑えるとはどういうことなのかをお伝えします。まず、大切なのは公式を一通りマスターすることです。もちろん公式の丸暗記はよくありません。なぜその公式が導かれるのかを自分で説明できるようになって初めてその公式をマスターできたと言えるでしょう。実際に僕は公式は無理に暗記せず、なんとなくで覚えて全て導出できるようにしていました。あとは、問題を解いていく中で自然に使えるようになります。覚えようとして覚えるのではなく、使っていくうちに覚えるのが効率が良いと思います。また、公式をマスターした後に解く問題は教科書の例題程度で構いません。教科書の例題は舐められがちですが、重要な例題が沢山載っているのでしっかりマスターしましょう。その後は、教科書の章末問題、網羅系参考書といった順番で進めていくと良いでしょう。僕は網羅系参考書でFocusGoldを使っていました。この流れで進めていけば大抵の問題で解説を理解することは可能だと思います。(初見で解けなくても) 大切なのは、丸暗記しないことです。数学は暗記科目ではありません。必ず思考のプロセスがあります。それをおろそかにするといつか難しい問題に当たった時に行き詰まります。そうならないように、日頃から思考のプロセスを意識して数学の勉強をしてください。思考のプロセスとは、何故そのような変形をするのか、何故その公式を使うのかなどのことです。これを説明できるようになると、数学の力がどんどん上がっていくでしょう。 最後に、何故そうなるのかを意識しながら数学の勉強を進めてください。分からないことがあれば基本事項に立ち返って、周りの人に頼りながら頑張ってください!良い結果が出ることを心から祈ってます!!
東京工業大学理学院 ひろ
0
1
理系数学
理系数学カテゴリの画像
初手からさっぱり
こんにちは。 確かに数学って暗記だけではどうにもならないし、解説読んだら理解出来ても問題見てそれを思いつくことって難しいですよね。。 範囲も多いし。 ということで方法を提案していきます。 まず、なにか好きな分野はありますか?二次関数、三角比、確率、図形など分野によって好き嫌いがあるときは自分の好きな分野を選び、それをとことん勉強してみるのはどうでしょうか。おそらく問題を見て解法が分からないのはまだ慣れていないからだと思います。ひとつの分野で慣れればその方法をほかの分野でも使って慣れていきましょう。 扱う問題ですが、最初は教科書の例題とかでいいと思います。復習出来たらどっかの大学の過去問とかがあればやってみてもいいし、青チャートみたいなものがあればそれをやってみるといいかと思います。 分野を絞ると意外と時間かからないですよ。頑張れば1日や2日で終わります。(習ってない範囲は時間がかかりますが) あとは考え方ですが、今初見の問題が解けないのはおそらく経験値がまだ足りていないからだと思います。ある程度慣れが必要です。でも焦る必要は全くないです。受験まであと2年もあるのでそれまでサボりすぎず向き合っていけば特別な訓練をしなくても経験値は積めます。今必要なのは入試レベルの問題を解けるようにすると言うよりは、定期テストレベルの問題を完璧に理解することだと思います。そうすれば受験生になった時復習が楽です。気長に地道に努力していけば大丈夫です。手も足も出ない問題が出てきたらその問題を解けるようになるまで復習しましょう。1発で解けなくて大丈夫です。
東京工業大学環境・社会理工学院 さる
1
0
文系数学
文系数学カテゴリの画像
解き直しでは解けるのにその場で模試が解けない
解き直しの時に解けるのは、1度その問題について考えているから、という可能性もあります。 おそらく、模試になると緊張というか気負いすぎて、問題に対して俯瞰して取り組むことができなくなっているのではないでしょうか? 模試を解いている最中にそんな感じがしたら、姿勢を正して遠くを見て気持ちを落ち着けましょう。 また、時間制限に慣れていないという可能性もあります。時間を意識するあまり、焦ってしまっているのかもしれません。1問にかける時間はこれだけ、とか決めてしまうと逆に焦って解けないことも多いです。これは慣れという面も大事ですが、時間をかけずに解けるなら、あまり時間制限を気にしない方がいいと思います。 正直、理科に関しては時間勝負のところがあるので時間制限を意識する必要はありますが、これに関しては演習量や模試を多く受けることによる慣れが大きいです。 自分が解き切るのにどれくらいの時間がかかるのかきっちり把握しましょう。
京都大学医学部 Yu
13
3
模試
模試カテゴリの画像
応用問題の解き方
こんにちは、はじめまして。 東工大二年のたかゆーといいます。 僕自身、高一の頃は進研模試の数学で60点とかを連発していましたが、高3の頃では東工大オープンで数学が10番代という結果を残せたのである程度参考になるかと思います。 質問者さんの「どうやったら応用問題を解けるようになるのか」ということですが原因は主に2つあると考えられます。 ①基本的な考え方(フォーカスやチャート)の問題を完璧にできていない ②問題を解く時になんとなくで解いてしまっている ①に関しては、ほとんどの受験生ができていないように思われます。全部解けるのはもちろんのこと、なぜそのような解き方、考え方をするのかというところまで理解しましょう。 僕はフォーカスしか使ったことがありませんが、文系の方でしたら例題の星4は完璧にしなくても大丈夫だと思われます。 具体的にどのようにフォーカスやチャートを使っていくかは僕自身のブログでまとめておりますのでそちらをご覧ください。 ②に関しては、①とかぶるところがありますが問題を解く時に使った考え方や解き方を「なぜ選んだか」という理由を自分なりに考えながら問題演習をしていきましょう。最初は難しいかと思いますが、自分なりに考えて量を積んでいくと見たことのない問題でもある程度方針を絞ることができます。 このトレーニングの積み方としては「入試数学の掌握」という参考書がすごく役に立ちます。 ですが、この参考書はあくまでも読み物として使いましょう。 入試数学において、解法の本質は30個程度しかないことに加え、問題を分析すればそのうちの2つ程度に絞られます。 この領域に達するのは難しいですが、僕が述べた方法で勉強していけば必ずたどり着く日がきます。 拙い文章ですが最後まで読んでいただきありがとうございました。 応援してます、頑張ってください
東京工業大学第三類 たかゆー
53
1
理系数学
理系数学カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像
数学絶望..
そもそも数学の勉強方法が良くないでしょう。 同じ問題も何周もやる勉強方法は「パターン暗記」型の学習で、応用力がつきません。 数学、物理は「本質を理解できているか」が重要です。 それぞれの単元の概念を理解することです。 公式は暗記せずに定義から導出したり、別解を考えてみたりすることで数学的思考力が身につきます。 とはいえ、これからだと時間がないですよね。 なので、過去問に的を絞って勉強しましょう。 間違った問題をなぜ間違えたのか徹底的に究明し、解き直しをしましょう。 解説は「チラ見」するだけに留め、なるべく自分の力で解くようにします。 問題集を4周もやったのであれば、パターンは頭に入っているはずなので、 組み合わせのやり方を学んでいくわけです。 頑張ってください。
東京大学理科一類 tama88
9
0
文系数学
文系数学カテゴリの画像
数学の発展問題が解けない
はじめまして。 まずは基本をしっかり理解しましょう。発展問題とは基本が理解出来ているかが問うてきます。言い換えるとただ書いてあること(文字や記号)を丸暗記するのではなく、意味を分かるということです。状況すなわち文字や記号が変わったら分からないというのは意味が分かっていないということです。 まぁいきなり文字や記号ではなく意味を理解しろと言われても難しいので、解けない発展問題と基本を比べたらどうでしょうか?そうすればこの式や表現はどのような解釈ができるかが分かります。その解釈だけが全てとは限りませんが、解釈を増やしていくほど理解が深まります。すなわち発展問題が解けないこと自体は問題じゃなく、その後が問題です。次に繋がるような確認をしましょう。 まだ中学生ということで、慌てる必要は無いと思います。ひとつひとつしっかりこなす事を大切にしていってください。 今コロナで大変だとは思いますが、頑張ってください。
京都大学農学部 31
10
3
理系数学
理系数学カテゴリの画像
数学の勉強法
はじめまして!東京大学理科一類の者です。 数学に悩んでいると言うことなので、数学の勉強方法をご紹介させてください! まず基礎的な話として、各項目の公式、定理を洗い出してみてください。次には、その公式や定理の証明や導出が行えるのかと言うことを考えてみてください。証明や導出は教科書やネットにのっていますので、確認したい場合は使用してください。公式や定理の証明や導出を行えるようにすることで、どの定理と定理が密接に関係しているのかやその式の本質的な意味が理解できるようになるはずです。 例えばですが、余弦定理の証明をしようとしたときに、三平方の定理を使用することになると思います。ではその三平方の定理を証明できるか?と言った具合に、どの定理にどの定理が絡んでいるかを確認することができます。また定義と定理の違いを再認識できるはずです。(結構重要) 次に問題集の使用方法ですが初見の問題を解いた後、自力で解くことのできた問題も含めて、解答で使用している計算操作に対して、「なぜその操作を選択したのか(どんな結果をみたい・得たいからその操作をしたのか)」という根拠を持っておくことが大切です。 この訓練を常時意識して取り組むことで、難問にぶつかったとしても闇雲に手を動かすのではなく、最速で私的にその問題を切り崩していくことが可能になるはずです。 どのような難問でも基本的には、基本問題の絡み合いなので、「どの基本問題が組み合わさってこの問題は構成されているのだろう?」ということを意識するのがいいかと思われます! 参考書の復習の際は、すべての問題を再度手を動かして解く必要はありません。再度手を動かして解く必要があるのは、その問題を読んである程度の時間が経っても解法が浮かばない場合です。この場合の解法とは、計算のことではなく先ほど述べた基本問題への分解ができるかという意味です。 解法が浮かんだ場合は、実際に解答と照らし合わせてみる程度で大丈夫だと思います。 以上が私のおすすめの数学の勉強法になります。 以前解けるようになったはずの問題が時間が経てば解けなくなっているとのことだったので、本質的な理解につながるような勉強方法をご紹介しました。 是非参考にしてください!
東京大学理科一類 ryu031ki
26
12
文系数学
文系数学カテゴリの画像
サルでもできる数学の勉強法
 あくまで個人的な経験に基づいた意見ですが、数学を上達させる秘訣は帰納にあると思います。「帰納」というのは、簡単に言えば具体的な事象から抽象的な事柄を導き出すこと。すなわち、数学を帰納的に行うというのは、ある問題を解いたら、そこからその分野に関する問題における一般事項を自分で探り出すということです。例えば、とある2次関数が与えられており、その最大値・最小値を求めよという問題があれば、まずはそれを解き、答え合わせや解説の確認等を行います。そしたら次に、同様の問題(ここでは2次関数の最大値・最小値に関する問題)に広く適用できる法則や公式、解き方のパターン(ここでは、例えば軸や定義域に注目することや、平方完成をすることなど)を見つけます。こうやって、一つ一つの問題から抽象的な事柄を導き出していく抽象化(メタ化)こそ、数学を上達させる秘訣だと思うのです。  ちゃんと問題集をやっている、たくさん問題を解いている、それなのに数学ができるようにならないという人は、おそらくこの抽象化を怠っているのが原因だと思います。いくらその問題を解けるように反復しても、ちょっと問題文を変えただけで解けなくなってしまう、それはむしろ当たり前のことで、その問題の解き方だけをいくら学んだところで、それだけでは応用問題を解くことできません。得たものを、その問題だけに使える状態にとどめているだけで、それを他の問題にも応用できるような状態にしていないのですから。だからこそ、帰納が必要になります。これを根気よく続ければ自ずと、どんな問題が出たところで手も足も出ないようなことはほとんど無くなりますし、苦手だったはずの数学をむしろ武器に変えることもできます(実際僕も、高1の時は模試で数学が1番酷かったですが、高2の終わりごろになると、数学が1番点数がよくなって、入試本番も数学を武器に戦えました)。  とはいえ、一週間で結果が出るかと言われたら懐疑的です。なので、これはあくまで長期的な勉強法、そして入試問題レベルを見据えた勉強法だと思っていただきたいです。しかし、今からでもやるに越したことはないと思うので、まぁそこはご自身でお決めになってください。  以上です。ご期待に沿う回答でなかったら申し訳ありません。
北海道大学法学部 @238
18
6
文系数学
文系数学カテゴリの画像
数学苦手の文系がテストで高得点を狙うには
こんばんは。 私も数学がずっと嫌いでした。しかし、大学受験では数学が必要だったため向き合わざるを得ず、模試のたびに「わたしって本当にできない」と感じていました。 これはあくまで私の体験談なので参考程度に聞いていただければと思うのですが、私は数学はある程度暗記科目になると思います。 例えば、三角比の基本対称式の問題の際(sinθ+cosθの値がわかるとき)、まずはsinθcosθの値を出すんだな、などと方針が頭の中にパッと浮かぶかが大切です。 たくさんの引き出しがあれば、一つの問題に様々なアプローチができますよね。問題を見た際に、これは3つの方法で攻められるかな、、とまず方針が手を動かすより先に浮かぶようになれば大分数学に対して意識が変わってきた証拠です。 では、これをするためにはどうしたらよいか。 良問をひたすら解いて、様々な解法の暗記→もう一度自分で解けるように→暗記 の繰り返しです。 私は受験のために予備校の数学の問題集を5周以上はしました。 きょうかさんは学校の試験対策ということですから、その範囲の青チャートで上の方法を試してみてはいかがでしょうか。 できないうちはとてもしんどいと思います。ですが、必ず力はつきます。 どうか諦めずに頑張ってくださいね。応援しています。
大阪大学人間科学部 なむ
19
0
文系数学
文系数学カテゴリの画像
模試の数学が取れるようになるまで
こんにちは、名古屋大学医学部のファルコンといいます。 時間が無く、解ききれない→これに関しては確かに演習不足が大きな原因だと思います。演出を重ねることで、このタイプの問題は××を使うんだといった接続を早めることができます。 後々落ち着いて考えれば解ける問題を落とす→これについては前の時間が無い〜に対して逆のことを言ってしまいますが、問題を解き始める前に見通しをたてるクセをつけるといいですよ。 与えられた条件から結論を導くのに、どの公式・考え方を使えばよさそうか?を考えてから解答を書くことで闇雲に解くのを防げます。 数学を演習する時に、「なぜそうなるのか?」「どうしてこの式を使うのか?」を常に考えてやるといいですよ。 公式ひとつとってもどうしてその公式が成り立つか?その公式は何を意味しているのか?を意識するだけでも変わります。
名古屋大学医学部 ファルコン
9
3
文系数学
文系数学カテゴリの画像
数学の点の取り方
数学の苦手な人の為に 数学の克服法について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、 半分間違っている認識だと思います。 実は数学はある程度、 暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、その問題の類題は解けないということです。 なので、これらの典型的な基本問題は 覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! どうしてこう考えるのか? どうしてこの式変形をするのか? といった考え方を暗記するということです。 一般的にこれらの典型的な基本問題を組み合わせたものが応用問題とされます。 つまり、難しく見える応用問題をいかにして自分の知っている基本問題の形にするかが差がつくポイントになります。 したがって、数学が苦手だと思う方はまず典型的な基本問題をある程度暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください! これをやるだけで数学はぐっと偏差値が上がります! ぜひやって見てください! 忘れた時に見返してくれたら幸いです!
慶應義塾大学理工学部 チェンパン
35
2
理系数学
理系数学カテゴリの画像