3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],""] 7:I[231,["212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","171","static/chunks/app/search/%5Bquery%5D/page-0c24408cf8b6c627.js"],""] 8:I[212,["212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","171","static/chunks/app/search/%5Bquery%5D/page-0c24408cf8b6c627.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"default"] f:I[490,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-0fe2b7488d45d26a.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"GoogleAnalytics"] 4:["query","5LiJ5qyh6Zai5pWw","d"] 0:["Tcvwz7WC5DVCXy7J1hGDq",[[["",{"children":["search",{"children":[["query","5LiJ5qyh6Zai5pWw","d"],{"children":["__PAGE__?{\"query\":\"5LiJ5qyh6Zai5pWw\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["search",{"children":[["query","5LiJ5qyh6Zai5pWw","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","search","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","search","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","$L6",null,{"async":true,"src":"https://securepubads.g.doubleclick.net/tag/js/gpt.js","crossOrigin":"anonymous"}],["$","$L6",null,{"id":"google-ad-manager","children":"\n window.googletag = window.googletag || {cmd: []};\n googletag.cmd.push(function() {\n googletag.defineSlot('/102643165/pc-under_title', ['fluid'], 'div-gpt-ad-1749012831201-0').addService(googletag.pubads());\n googletag.defineSlot('/102643165/unilink_web_under_advice', ['fluid'], 'div-gpt-ad-1749138434339-0').addService(googletag.pubads());\n googletag.pubads().enableSingleRequest();\n googletag.pubads().collapseEmptyDivs();\n googletag.enableServices();\n });\n "}],["$","body",null,{"className":"__className_e8ce0c","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/5a4106e5f8f6bb49.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"「三次関数」に関する受験勉強の質問一覧 | UniLink"}],["$","meta","3",{"name":"description","content":"「三次関数」に関するUniLinkの質問と回答を一覧で確認できます。UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3866,["212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","171","static/chunks/app/search/%5Bquery%5D/page-0c24408cf8b6c627.js"],"AdOnAdviceList2"] 14:Te31,こんにちは! たしかに三元一次は煩雑になってミスりがちですね笑 自分もベクトルの大きさの計算なんかはかなり苦手でした。 以下、計算ミスを防ぐために(特に共通テストで)気をつけるポイントをお伝えします! ①ベクトルの成分は縦に書く もしかしたら既にやっているかもしれませんが、ベクトルの成分は縦に並べて書きましょう。現行の教科書などは成分が横『(2,4,3)のような形』で書かれていることが多いですが、これだとミスりやすいです。   2 { 4 }   1 のように縦で成分表示すると文字が入って式が複雑になっても見やすいので、成分同士の方程式や内積の計算をするときのミスがかなり減ります。 (OP→)=x(a→) +y(b→) + z(c→) のような場合も、       a (OP→)={ b }       c のように表しちゃうと計算でミスりづらいです! ②大きな余白や白紙のページを利用する 共通テスト本番ではめちゃくちゃ煩雑なベクトルの計算が出ることは正直あまりないです。しかし、東進などの予備校が手掛けている模試や問題集の中には、計算ゲーのような悪問も含まれているのが現状です。ですので正直に言えば、そういった模試などの悪問でケアレスミスをしてしまっても一喜一憂することは無いと思います。 しかし、工夫をするとすればやはり余白の使い方でしょう。「あ、この計算重いわ」と感じたら、無理して小さい余白や暗算に頼らず、どっしりと構えて大きな余白を探しましょう。その分タイムロスに感じるかもしれませんが、いくらわさんのように京大を目指すレベルであれば、タイムロスよりも安易な判断による失点の方が痛いことは明確だと思います。心に余裕を持って頑張ってください! ③後回しにする 共通テストの数学は、ひらめきゲー/誘導ゲーな要素があります。自分のやり方でやったら死ぬほど難しい式がでてきたけど,誘導にうまく乗っかって解き直したらめちゃくちゃ簡単だった、なんてケースがかなり多いです。また、わからないからとりあえず飛ばして最後に戻ってきたら、頭がクリアになって簡単に解けたというケースも多いです。 問題が変に難しいなと感じた時は、割り切ってスキップして、最後に戻ってくるようにしましょう。仮に計算ミスをしていたとしても、後で見直すと間違いに気づきやすいです。共通テストはとにかく時間と勝負なので、沼りはじめたら終わります。とりあえずスキップしてみることは案外大切な心構えですよ! ①〜③までご紹介しましたが、特に大事なのは③です。 これは共通テストの数学では本当に大切な考え方です!一緒に受験勉強していた東大生の友人たちでさえ、計算が煩雑になったり沼ったりすることがありましたし、そういう時はとりあえず飛ばして最後に戻ってくるのがいいと話していました。 ぜひ参考にしてください! また、これから過去問などで形式に慣れていけば、だんだん計算ミスは減ってくると思いますよ〜!頑張ってください!15:Tc0d,お答えしますね! 僕はミスが絶えないタイプの人間だったのですが、それを克服して、本番は一切計算ミスなどをすることなく合格することができました。ミスを減らす事は合格に直結するので僕のやったことを書いてみます。 さて、そもそもなぜミスするのでしょうか。もちろん注意力不足というのはあるでしょう。(この減らし方は後で書きます)ですが真っ先に疑って欲しいのは学力不足です。人間は自分のレベル以上のことをやろうとすると、いろいろなことを考えるためにミスが増えます。逆に自分にとって簡単なことはまずミスをしません。例えば九九や一桁の数字の足し算などです。これらをミスすることがあるでしょうか。おそらくないと思います。それは僕らのレベルがそのレベルの計算をはるかに凌駕しているからです。一方、積分などを習いたての頃は、それなりに苦労をしたと思います。それは自分のレベルのギリギリでものを考えているからです。後から見れば「符号を間違えた」という程度のことであっても、それが演習不足、経験不足に起因する事は多いです。自分の学力を疑うことは辛い事ですが、ここと向き合うことで今以上に実力を伸ばすことができると思います。 続いて、純粋なケアレスミスの減らし方です。学力が十分にあっても、間違えるときは間違えます。それを減らすにはどうすればいいでしょうか。その方法の一つとして 「自分のミスを分析したノートを作り、問題を解くたびにそのノートを見返す」 というのがあります。実は自分がやるミスというのは限られています。自分がどういうミスをした自分がどういうミスをしたのかをノートにまとめ、いつでも見返せるようにしておくと、問題を解くときにミスしないように注意すべきポイントがわかり、格段にミスが減ります。ぜひやってみてください。 さて最後に、「計算結果を覚えてしまう」という方法があります。なぜミスをするのかというと、そもそも計算するからです。計算しなければミスのしようがないわけです。なぜ九九を間違えないかといえば、それは九九を覚えているからです。なので、30²以下の平方数(16²=256など)などよく使う計算は結果を含めて覚えておくというのも一つの手です。 以上です。少し厳しいことも言いましたが、「数学でミスをする=30点がなくなる」です。どれだけ考え方があっていても、計算結果が間違っていればほとんどの場合点はありません。それくらいシビアなものだと思って、ミスをなくせるように頑張ってください!2:["$","main",null,{"className":"px-4 pt-4 pb-4","children":["$","div",null,{"className":"max-w-3xl mx-auto w-full","children":[["$","div",null,{"className":"mb-6","children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/xmlqqjx3","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"rounded"}]}]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":["「","三次関数","」の検索結果"]}],["$","div",null,{"className":"border-b-2 mb-2"}],["$","div",null,{"className":"mb-4","children":["$","div",null,{"className":"divide-y","children":[["$","div",null,{"children":["$","$L7",null,{"href":"/advice/4lEdlX0BTqPwDZPuymBG","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数Ⅲについて"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"この質問に素直に答えるなら余裕で習得できるよ🙆‍♂️\n\nただ、前提として1A2Bが正しく理解できている必要があるよ!\n数3の範囲について少し説明するね。\n\n\n①平面上の曲線\n楕円とか双極線っていう、円の上位互換みたいなやつが出てくるよ〜。\n→数2の図形と方程式の応用だからそこがしっかり出来てないとダメ🙅‍♂️\n\n\n②複素数平面\n複素数を図形的に扱っていく単元だよ!図形を回転させれるようになるね🙆‍♂️\n→数2のいろいろな式の範囲の複素数がマスター出来てないと🙅‍♂️\n\n\n③関数と極限\n数2指数関数、対数関数、三角関数、数B数列ができたら、それを無限大までビヨーンって伸ばすとどうなるのってお話しだね。\n→上に書いた単元はマスターしよう!\n\n\n④微分\n今までの微分より関数が複雑になっていくよ!でもパターンがあるから網羅できれば大丈夫👌\n→数Bの微分をマスターしておこう!\n\n\n⑤積分\n体積とか曲線の長さを求められるようになるよ🙆‍♂️簡単ではあるけど計算が面倒になるから計算力も必要!\n→数Bの積分をマスターしておこう!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["東京工業大学物質理工学院"," ","yuya"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":23}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":5}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math9.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/EEuXnXUBTqPwDZPup9ij","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数学 理解度"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"数Bおよび数3はパターンがかなり明確です。\nおそらく、質問者さんはそのパターンを整理して定着させきれていないのだと思います。\n\nパターンが明確ということは、違うやり方で解こうとするとかなりキツかったり、もしくは解けないことが多いということです。\n特に数列はその傾向が強いと思います。\nやり方を押さえてしまえはをたいていの問題は解けるようになるので是非頑張ってください。\n\nポイントとしては、問題に対してなぜその解法を使うのかをしっかり整理するつもりで勉強すればできるようになると思います。\n(例えば、xcosxの積分は部分積分ですが、これはxを微分すると1となり消えるからですね。こういうことをわかっているとe*xcosxも同じようにできると判断できますね(もっと楽な解法もありますが))\n\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学医学部"," ","Yu"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":8}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L13","ad-on-advice-list-2",{"id":"ad-on-advice-list-2"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/gzG6RdpGEfdTHpbJDGps","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"三元一次方程式 計算ミスを減らすには"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$14"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学経済学部"," ","choco"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math10.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/KFJ2MYMBTqPwDZPuNN3b","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数学ⅢとⅠAⅡBの応用について"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!\n\n結論から言いますと、数3が完全に1a2bの全ての範囲の復習になるかと言いますと、そうとはいえません。数3は数1,2の復習にはなると思うので、数3をしながら数1,2の基本が足りないと思ったらそこに振り返る、というのがベストだと思います。特に、数3は数Aの内容をあまり含んでいません(含むとしても、確率の一部程度)。ですので、数3をメインでしつつ、数Aの復習はした方がいいと思います。\n\nまた、数Bに関してですが、数列は極限という単元でかなり復習できます。しかし、ベクトルに関してはほぼほぼ扱いませんので、ベクトルは定期的にやっていきましょう。図形的な分野を中心にやるといいと思います。\n\n数3はかなり難しく、骨のある分野が多いです。微積分は特に量が多く、つまづく部分も多いと思います!ですので、できるだけ数3は早くから取り組み、時間をかけて定着させていきましょう。\n\nここまでをまとめると、\n・数3は数1,2、Aの確率の一部、数列の復習となる。\n・数Aの確率、整数は含んでおらず、定着に時間がかかるため、別でやっておくのがよい。\n・数Bのベクトルもほぼほぼ含んでいないので、図形的な分野中心にやっておくのがよい。\nです!頑張ってください!!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学経済学部"," ","riku"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":10}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math6.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/ANG212YBTqPwDZPueUoq","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数学1.A.2.B.3の細かな効率良い順序"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"数I、数II、数IIIはかなり関連がありますが\n数A、数Bは独立した分野も多いと思います。\n\n数と式(数I)\n2次関数(数I)\n図形の計量(数I)\n方程式、式と証明(数II)←Cの計算だけこれの前にやる\n図形と方程式(数II)\n三角・指数・対数関数(数II)\n微分・積分(数学II)\n平面ベクトル(数B)\n平面上の曲線(数III)\n複素数平面(数III)\n\n集合と論理(数I)\n場合の数と確率(数A)\n確率分布と統計(数B)\n\nデータの分析(数I)、整数の性質(数A)、図形の性質(数A)、数列(数B)、空間ベクトル(数学B)の5つは比較的独立してるので好きな時にやってもらって大丈夫だと思います。\n\nそして上の分野全てが終了したら数IIIの残りの分野、\n関数と極限(数III)、微分(数III)、積分(数III)に取り掛かりましょう。\n\n頑張ってください!\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学理学部"," ","kairi"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":228}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":13}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/THJ4Tl7Suo5GsoZU7Pok","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"昔やった単元を忘れてしまう"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"1028さん、はじめまして!\n\n\n\nしばらく触れていないと忘れるのは皆んなそうだと思うので、心配しなくても大丈夫です。今でも二次方程式の解の公式ですらたまに抜けています笑\n\n対策としては何度もその単元に触れることしかないと思います。\n\n私も、一度ある単元を勉強しても模試の時に突然出てきて、完全に忘れてて解けない、という経験が何度もあります。\nそのたびにその単元をしっかり復習するということを繰り返していくうちに脳に定着していました。\n\n日頃から参考書なんかを回して復習するようにしたり、模試なんかのたびに全てさらっと目を通すなど、触れる回数を増やせば増やすだけしっかりと記憶してくれます。\n\n\n効率的な覚える頻度として有名なものは、最初に覚えた日から3日後、1週間後、2週間後、1ヶ月後、3ヶ月後に覚え直すということです。\n最初の方はこまめに復習し、どんどんと復習する間隔を伸ばしていくと最後には脳に定着しているようです。\n\n\n\n長くなってしまいましたが、参考になれば幸いです😁\n質問などがあれば、気軽にコメント欄で聞いてください!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","さかさか"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":11}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":5}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math11.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/VTtpvW4BTqPwDZPuU94n","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"具体的な数学の勉強法について"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"質問者さんの数学へのアプローチは受験に向かうにあたり、非常に大事になってくるものです。\n図形と方程式の分野では、新たな考え方(グラフ→方程式、方程式→グラフ、更には三角関数や数Aの考え方まで!!)が複合されていきます。\n\n青チャートといった参考書の「指針」となる考え方を踏襲することが第1ですが、図形と方程式に関しては論理を定着させていく必要があるように感じます。\n\nひとつの参考書や1人の先生の教えでは考え方の幅が広がりにくいので、新たな学びの場をあげておきます。\n「受験の月」「高校数学の美しい物語」といったHPです。\nあらたな考え方、特に理系的、論理的な考え方を獲得し、自分の中のパターン化に選択肢を持たせてみてください。\n\n具体的な解決策を回答者が提示できないこと、申し訳なく思います。ご武運を祈ります。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["大阪大学法学部"," ","木村くん。"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":10}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math8.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/LFWHFwpXZI5OUzr1rjP6","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"三角比はある程度理解してとばしたほうがいいのか?"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!受験勉強お疲れ様です!\n\nまず数Ⅱで習う三角関数ですが、これは数Ⅰで習う三角比を関数として拡張したものになります。そのため、三角比との用途はある程度異なるものになります。三角関数は関数としての側面が重視されますが、三角比は図形問題に置ける使用がほとんどです。\n\n計算問題としての三角比の応用問題であれば、三角関数を理解することで十分対応が可能であると考えられますが、三角比を用いた図形問題になれることも大切でしょう。そしてこれら、三角比を用いた図形問題は、共通テストでも必ず出題されます。そのため、三角比の問題をしっかりこなすことは必ず意味がある行為です。\n\n三角比を用いた図形問題に早いうちから触れておくことは重要ですし、三角比をきちんと理解することで三角関数の正確な理解にも繋がります。\n\nそして、一般に受験生としては先取りを早く進めることも重要ですが、その都度分野を深く理解することが大切です。\n\n私自身、先取りを高一で数Ⅲまで行っていましたが、経験上、その都度先取りした分野はある程度完璧にしておかないと、先取りの意味があまり無くなってしまいます。先取りが終わった後あまり完成度が高くなければ、本末転倒です。\n\nとはいえ、分野を周回しているうちに、習熟度も上がっていくのも事実です。そのため、図形的な応用はもちろん、三角比についてきちんと理解しながら、先取りを進めていくことがベストでしょう。\n\n私のおすすめの勉強法は先取りをしつつ、勉強した分野を定期的に復習するという勉強法です。学校の定期テストや模試などをペースメーカーにして復習するのも良いでしょう。そうすることで先取りかつ取りこぼしなく勉強できます。\n\n長くなりましたが、まとめると\n1.三角比には図形問題という側面が大きく三角関数が完全に互換性のあるものではないということ\n2.先取りは分野ごとにある程度仕上げる必要があり、復習とのバランスが大切だということ\n3.復習のペースメーカーには定期テストや模試を有効活用できるということ\n以上3点です。\n\n受験勉強頑張ってくださいね!志望校合格をお祈りしています✨"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学医学部"," ","sei108"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/wlLMgoIBTqPwDZPuosCg","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"助けてくださいby三角比でつまづいた高1文一志望"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":" 何がわかんないのかわかんないんでなんとも言えないんですが、正直難しい単元ではないので集中的に3.4日程度時間取ればほぼ仕上げることはできると思いますよ。高一なら苦手単元に時間を割いてもあまり痛くないですし、むしろ極端な苦手は気合入れて一気に直しちゃった方がいいですから、4日くらい三角比(関数?)漬けになってみてください。きっとできるようになります。\n ちなみにそれでも完璧にならない!って場合でも、基礎さえできてれば正直三角比(関数)はほっといても良いです。後々数学に接してると死ぬほど出てくるんで勝手にできるようになります。ただし基礎さえできてれば、ですよ! 僕も昔は苦手でした。\n\n 一つ大事なのは、焦らずに落ち着いて勉強することです。わかんない!やばい!って思いながら勉強してると、不思議なことにどんだけやってもわかんないので、落ち着いて、噛み締めるように勉強していってください。まだ高一ですから焦らずに。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["東京大学理科一類"," ","Atom"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math8.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L13","ad-on-advice-list-9",{"id":"ad-on-advice-list-9"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/DuGWGE9bYKUo7zynjW70","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"チャート 分野ごとに周回するか全体的に周回するか"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"慶應大学理工学部に通っている1年生です。\n相談を読ませていただきました。\n一橋大学や東大は他の文系と違い、理系と同等、比べる大学によっては理系よりも遥かに難しい数学の問題を出してくるので、文系的な視点だけでなく、理系的な視点な意見も参考にして欲しいです!\n\n一橋大学をはじめとした難関大学はほとんどの問題において複数の分野を跨いで問題を出します。\n例えば、三角関数から二次関数(解の配置)を解かせるものだったりがあります。\nそれを解けるようになるためには、単元に縛られない勉強を普段からする必要があります。\n\nチャートなどの網羅系参考書は単元ごとにまとまっていることが長所でもあり短所です。\n初学者が新しいことを単元として捉えて、まとめて学ぶことにおいては長所ですが、\n何回も繰り返しやってしまうと問題の内容から解き方を考えているのではなく、やっている単元から解き方を考えるようになってしまう短所が存在します。\n\n人は残念ながら忘れっぽい生き物であるため、同じ内容を短期間で繰り返しやっても時間が経てば忘れてしまいます。\n「先に進んで忘れたらどうしよう」という悩みはとてもよくわかります。\n不安はあるとは思いますが1.2回できるようになったら先に進みましょう。\nそして先にある程度進んで、その単元の内容がまた出てきたならば、その時見返しましょう。\n\n数学は面白い科目で過去の単元が新しい単元に結構絡んできます。そして新しく学んだ単元が過去の単元に絡むことも頻繁にあります。\nわかりやすいのはベクトルの話だと思います。\nなので全体的にバーっとやった方が効率も良く、結果的に理解もより深くなります。\n\n以上の点より結論としては\n全体的にバーっとやった方がよい!\nと思います👍\n\nあくまで個人の意見なので参考程度に思ってください!\n合格を心から願っています。頑張ってね"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学理工学部"," ","雲幸三郎"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math8.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/TBofwNJygvMBuECj0gnF","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"三元一次方程式 計算ミスを減らすには"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$15"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学理学部"," ","UU"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math2.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/jBDlO4nqFfOSXxhK6xb5","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"三角比のcos(tan)がマイナスになる理由が分からない"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"勉強お疲れ様です。\n中学生で高校数学をやっているなんて\nびっくりです。\n\nまず、三角比は直角三角形の鋭角に対して\n定義されています。\nなので、三角比においてはsin、cos、tanは\nすべて正の値となります。\n\nそれに対し、三角関数は単位円の座標から\n求めるものです。\n\nなので三角関数では、sin、cos、tanは\n負になる事もあるという事です。\n\n\nただ、三角関数は三角比の考え方を\n拡張したものなので、\n三角関数を考える際に直角三角形を\n用いる事ができます。\n(むしろその方が分かりやすいです。)\n\n例えばcos150°が何になるかを考えて見て下さい。\n\n単位円上では、cosはx座標に対応しますね。\n単位円で30°の直角三角形と、\n150°~180°の間で形成される30°を\nひとつの角とした直角三角形を\n書いてみてください。\nこの時、これらの三角形がy軸を中心に\n線対称となっている事がわかります。\n\nこの事から、cos150°にマイナスをつけて\n正の値にしたものはcos30°に等しくなる事が\nわかります。\n\nつまり\ncos150°=-cos30°=-√3/2\nと求められます。\n\n\nこのように考える事で、\n第二象限、第三象限、第四象限の三角関数を\n第一象限の三角比から求める事ができます。\n\n理解していただけたでしょうか。\n少しでも参考になれば幸いです。\n何か質問があれば遠慮なく聞いて下さいね。\n勉強頑張って下さい!!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["早稲田大学先進理工学部"," ","まさ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math9.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/Xb4JGVSM7pjxVfg1tYSG","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"新高2 数III黄チャートと数II1対1の比率"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"新高2で数3に入れているのは、十分なペースだと思います。高一の春に数3一周終わってるとか、まじでどうでもいいとおもいます。それで焦って急いで数さんを一周するのは、よくないとおもいますよ。自分は地方の中高一貫の私立高校に通っており、塾に通っていなかったので、数3を始めたのは、高2の夏ぐらいからでしたが、十分間に合いました。数1,2はある程度仕上がってるとのことなので、そんなに急がなくていいと思います。\n\n自分も黄色チャートと一対一使ってたので、参考までに自分がどのように使ってたのか記します。\n\n学校で教科書の解説と傍用問題集の演習をしているときに、それと別途で週末課題として黄色チャートのpracticeと exerciseをやってました。それが終わると、チャート卒業して、学校の授業でオリジナルスタンダードという、少し難し目の教材をつかい、それに並行して一対一が週末課題になってそれを全部やっていくという感じでした。\n\n黄色チャートは本当に基礎なので東大いくなら全部こなすのがあたりまえです。ですが一対一は確かに基礎ではあるものの、かなり2次試験を意識してある問題集なので、そこそこきついとはおもいます。ですからこれらを並行してやるのはいいとはおもいません。黄色チャートで、もう完璧だと思えるほどちゃんとやったあと、一対一に移ればいいとおもいます。自分はこうさんの春ぐらいから一対一やりましたが、2か3周はできます。ですから急いで一対一するより、チャートしっかりやってからの方がいいとおもいます。\n\nちなみにですが、難関大の数学の入試において差がつくのは1A2Bです。数3はある程度定型問題になりがちなので、数3の小問は満点狙いで行きましょう。だからこそ数3完璧と思えるほどきっちり仕上げることが大事だと思います。\n\nまとめると、黄色チャート完璧にしたあと(もう戻ってくることはないだろうと思えるぐらいのレベル)一対一に移れば十分だと思います。焦らずじっくりやってください。高2の初めで数3入れてるのは本当にいいペースです。頑張ってください。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学医学部"," ","タカフミ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math6.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/tBLa2moBTqPwDZPuR5Ud","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"図形の性質を勉強するとき"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"この単元は、二次試験では単独で出ることはあまりありませんが、センターでは必出ですよね。図形の性質で大事なのは\n1.三角形の五心の性質を区別し、理解する\n2.方べきの定理を「覚えて」「使える」ようにする。\n3.オイラーの多面体定理など空間図形に慣れる。\nことだと思います。1.に関しては図形の性質だけでなく、ベクトルや図形と式などの分野とも絡んできますので必ずできるようにした方が良いでしょう。2.はセンターで頻出の問題ですから、チャートやセンター型の問題集でたくさん演習しましょう。3.は、センターでもあまり出題されてないような気がしますが、範囲内である以上来年出されても文句は言えないので、\n教科書やチャートで基本事項を確認して、演習もしておくと良いでしょう。まず大事なのは、1.2.を完璧にすることだと思います。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学法学部"," ","AO"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":16}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math4.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/QTkOyYtiAZwoyVNL","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"難関大学を目指す高校一年生の今できること"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"はじめまして!昔の自分をみているようでとっても応援したくなりました^^少しでもお役に立てればと思います。\n\n私は高3のはじめまで塾に通うことはせず、ずっと高校の試験勉強を中心にしていました。数学は高校で4stepという教材を使っていたので1から復習しました。苦手な分野は基本問題からやって、得意な分野は発展問題にも挑戦しました。\n高校生は今も授業がありますよね。それにテストも近づいていると思うので無理に並行しなくていいと思います。どっちも曖昧になってしまう方がもったいないです。\n三角比は公式を覚えることがまず大事ですね。とにかくたくさん出てくると思うので覚えるのが難しいかもしれませんが、その公式の導き方もセットで覚えるといいと思います。\n確率はみんな苦手です(笑)私もずっと苦手でしたが青チャートを使っていろんなパターンを習得しました。一度理解すると結構ポンポン進みますが、たまに理解が追いつかない時もありました(^^;)出来るようになった方がいいですが、無理だと思ったら基本的な問題をとれるようにするだけでいいと思います。私はそれで早慶受かってます(笑)苦手な分野は誰にでもあるものです。他に強みを作っておくといいですよ。青チャートをやったあとに赤チャートにも挑戦しましたが全てを理解出来たわけではなかったと思います。高3になったときにやりましたが、ある事象が起こる確率をPnして漸化式を用いてPnを求める問題は出来るようにするといいと思います(まだ先でいいと思います)。\n今からちゃんと復習して身につけられていれば高3になったとき楽ですよ!頑張ってくださいね。応援しています^^"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学理工学部"," ","sk__8"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":19}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math8.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/pVFw2H0BTqPwDZPuGI3u","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"式と曲線と複素数平面"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは。\n複素数平面と式と曲線の勉強についてですね。\n基本的には今持っている青チャートとプラチカで十分だと思います。\n基礎が危ういなら青チャートの例題などを丁寧に解いてみてください。時間はあまりないので、これ解ける!って自信のある問題は飛ばしてもいいです。終わったら、プラチカで演習してみましょう。もし難しくて解けないのであればもう少しレベルを落としたら良いと思います。個人的には北大の問題とかは難しすぎずにためになりました。\n\n式と曲線は微積と組み合わせて出てくることが多いです。微積の問題解く中で思い出しながらやってみてください。あまり出ることはないと思いますが、もし出たら焦るので、極方程式や楕円、双極線の性質などは青チャートなどで復習すると良いと思います。\n\n頑張ってください!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学理工学部"," ","Eri"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math4.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L13","ad-on-advice-list-16",{"id":"ad-on-advice-list-16"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/SkvpO3QBTqPwDZPu2DxZ","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"共通テスト数学 点数取れない"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!\n\n数学では、問題文に出ている数や文字からある程度方針が立てられるような問題が多いです。\n\n簡単な例ですが、例えば三角関数では、問題文に外接円が出てきたら正弦定理を使うのだろう、問題文に3つの辺が(もしくは2辺と角の大きさが)でてきているなら余弦定理を使うのだろう、と言ったものです。\n\n問題集に関わらず、解いているときや解説を見るときにこの見方ができるようになるかならないかで大きく成長度合いは変わっていきます。ここが大事なポイントです!\n\nこれができるようになると、〇について求めたいから、先に☆について求めればいいのか!という考え方ができるようになっていきます。\n\n勉強法は様々ありますが、問題集をやる→間違えたところをチェック→1日後と3日後にもう一度→1週間後と1ヶ月後にもう一度がおすすめです。期間は人によりますが、私は答えや解き方を暗記してしまわないようにこのサイクルで行っていました。言い換えると、解き方を思い出して解くのではなく、きちんと解き方を考えながら解くようにしていたということです。解き方を暗記してしまうと応用が効きにくくなってしまうからです!伸び悩んでしまう人がしがちなポイントです。\n\n以上の2点抑えてくだされば、キヨ猫さんはもっと伸びるかなと思います(すでにできていたら申し訳ないです_(._.)_)。あとはやはり量をこなしましょう。勉強は効率と量のかけ算だと思います。数学は特に解き慣れていくことが大切です。\n\nまじでがんばってください!みんな応援しています!\n\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["東北大学農学部"," ","HNO3"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":20}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math14.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/nmB0zVpySkQn7BBcAvUJ","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数II、数Bの基礎"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"お疲れ様です。\n数学II Bの特徴として、個人的には①微分積分・数列・多項式など計算量が増え複雑な単元が多い②微分積分の最大最小値やベクトルなど図を書いてイメージするものが多い\nの2つがあると思います。\n\nこれらの特徴のうち、特に②は数学1aが得意でも2bになった途端に苦手意識を持ってしまう人が多い要因になっているように思います。(①は問題を多く解いて慣れれることで対応できる要素も強いため)\n\nそのため個人的に進める優先的復習分野としては\n★二次関数(特に最大最小値)\n微分積分では三次関数より大きい関数の最大最小値を求める必要があります。そのため二次関数で確実に最大最小値について理解していないとつまずいてしまう可能性が高いです。定義やXの範囲によって最大最小値を場合分けする方法などを確認しておきましょう。\n★図形と計量・図形の性質\nこちらも特にベクトルで使います。チェバ・メネラウスの定義など復習しておかないと混乱してしまう可能性があります。今一度問題を解いてみてはいかがでしょうか。\n\nもちろん全分野復習することができればベストなのですが時間が限られている場合はこちらを優先してみてはいかがでしょうか。また、2bの学習を進める中で「1aで見た気がするけどわからない…」という分野があれば放置せずすぐに復習してみてください。疑問が解決することも多いですし放置するとどんどん先に進んでしまい余計わからなくなってしまうこともあります。\n以上、ご参考になれば幸いです。\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学法学部"," ","わしゅう"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math2.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/j7ixaOa3AA6qP87WjHFd","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"三角比のcos(tan)がマイナスになる理由が分からない"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!私もここの単元の同じところで悩んだことがあるのでお答えします!\n\n結論から言いますと、辺の比というよりも座標の値からsinθ、cosθ、tanθのを求めるという考え方に近いと思います。厳密にいうと「辺の比と\"向き\"」を考慮して三角比を算出しているため正負が存在します。分かりやすくいうと、平面座標(単位円上)で考えると三角関数は角度や長さのみではなく「座標の正負」も関与している、ということです!\n\n例えば、\n・cosであればx座標。(底辺の長さの座標)\n  θ=π/4の場合 x=1/√2 \n  θ=3π/4の場合 x=−1/√2\n\n・sinであればy座標。(高さの座標)\n  θ=π/3の場合 y=√3/2\n θ=4π/3の場合 y=−√3/2\n\n・tanであれば斜辺の傾き\n  θ=π/4の場合は 傾き=1\n  θ=3π/4の場合は 傾き=−1\n\n以上のようになります。\n三角関数は、「長さの比」というよりも「座標上の値の比」として考えた方がしっくりくると思います!!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学薬学部"," ","あにゃ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math14.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/VtIecmSdKHQrnBDk","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"初見の問題に手が出ない"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"初めまして\n\nその問題でその解答が使われて入る理由を理解すれば良いです\n\nそれは青チャートの問題と解答の間にある指針というところに書いてあるので、それみて理解しましょう。 ただあれは簡潔にし書いてないので必要に応じて自分での付加情報を含んでの理解をお勧めします \n\n例えば二次関数であれば、この最小値問題の設定は、頂点が定点で下に凸の二次関数、範囲はa