UniLink WebToAppバナー画像

公式の成り立ちを知っても、問題が解けない

クリップ(3) コメント(0)
3/26 0:57
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

鈴木

高2 愛知県 大阪大学工学部(61)志望

学校の授業や、参考書で公式の成り立ちや、考え方を習っても問題が全然解けません。 テストも全然点数が取れず悩んでいます。 物理基礎は、出来たのでなぜ出来ないのかが分かりません。どのように勉強すればよいか、又考え方などありましたら、是非ご教授をお願いします。

回答

回答者のプロフィール画像

カズ

東北大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
ご相談の文章から推測できる原因としては二つ考えられます。ぜひこれを参考にご自身の勉強法を見直してみてください。  一つ目はそもそも物理法則や原理などを十分に体得しきれていないことです。たとえそれらを授業や参考書などで理解したとしてもそれはただ「説明を理解しただけ」で、体得できていない可能性があります。そのため、まずは教科書に載っている物理法則や原理を何も見ない状態で他人に説明できるくらいの状態になっているか確認してください。  例えば  ・力学的エネルギー保存則とは?  ・保存力とは?  ・仕事とエネルギーの関係は?  ・動摩擦力は保存力ですか?それはなぜですか? などを何も見ない状態で説明できるようにする必要があります。特に鈴木さんの志望している阪大ででは、それらの基礎が抜けていると命取りになります。  ただし、電磁気や原子分野に特に多いように思われますが、高校物理の知識だけでは原理や法則の体得が難しいことがあります。その場合は無理に式の導出などをする必要はなく、式とその式の意味を体得できていれれば十分ですが、それらは大抵教科書にも式の導出などは記載されていないことが多いので、とりあえず難しいことは考えず教科書の内容を他人に説明できるくらいに理解できているかを確認し、できていない場合はそこからやり直すことをお勧めします。
二つ目は、上記のことはできているがそれらの使い方を理解できていないことです。  入試物理で求められているのは物理法則や原理の理解だけでなくそれらを使って世の中の様々な現象を論理的に説明する力です。そのため、原理や法則を理解しただけでは問題が解けないのも当然の話です。したがって、原理や法則の体得ができているのであれば、それらの使い方がわかっていないのかもしれません。そこで必要なのが問題演習です。しかし、問題演習といってもただ問題を解けばいいわけではありません。初めは「良問の風」などの典型問題を多く載せた問題集をお勧めしますが、基本レベルの問題集で原理や法則の基本的な使い方を学ぶ必要があります。最初はあまり解けないかもしれませんが問題ありません。大切なのはそのあとです。解説をしっかり読み、なぜその原理や法則を使うのか考えてください。例えば、  ・なぜこの問題では運動方程式ではなく力学的エネルギー保存則を使ったのだろうか  →運動方程式を用いて解く場合には質点の位置の時間変化の情報が必要だけど運動を始めた時と終えた瞬間についての情報しかない  →力学的エネルギー保存則が成り立つ条件では最初と最後の情報さえあれば解けるからこの解法になったのか! といったように復習することが必要です。もちろん、最後の文章にある「力学的エネルギー保存則が成り立つ条件」というのは教科書の内容を理解できていれば説明できると思いますし、できなければ教科書に戻って該当分野の復習をする必要があります。  一つ注意してほしいのは、教科書の内容の体得も、問題演習を通した基本的な解法の体得も、「教科書・問題集を〇〇周すればよい」というのはやめるべきです。極端なことを言えば、一周しただけですべて身についてしまえば復習の時以外に解く必要はありませんし、五周しても身についていないのであれば該当部分を中心に六周する必要があります。  どちらかに当てはまっていないか確認してみてください。  参考までに、次のステップについても少し述べておきたいと思います。  「名門の森」や「重要問題集」、「阪大の過去問(青本をお勧めします)」などを使ってより複雑な問題に対する原理・法則の使い方を身に着けてください。ただし、過去問はこれらに加えて問題の傾向や難易度の分析も忘れずに行ってください。  浪人中に実際にこの勉強法を実践したからこそ、とても大変な要求であることは誰よりもわかっているつもりですが、少しでも参考になると思っていただければ嬉しいです。長文になりましたが、最後まで読んでいただきありがとうございました。受験勉強頑張ってください!応援しています!
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

公式の成り立ちを知っても、問題が解けない
 ご相談の文章から推測できる原因としては二つ考えられます。ぜひこれを参考にご自身の勉強法を見直してみてください。  一つ目はそもそも物理法則や原理などを十分に体得しきれていないことです。たとえそれらを授業や参考書などで理解したとしてもそれはただ「説明を理解しただけ」で、体得できていない可能性があります。そのため、まずは教科書に載っている物理法則や原理を何も見ない状態で他人に説明できるくらいの状態になっているか確認してください。  例えば  ・力学的エネルギー保存則とは?  ・保存力とは?  ・仕事とエネルギーの関係は?  ・動摩擦力は保存力ですか?それはなぜですか? などを何も見ない状態で説明できるようにする必要があります。特に鈴木さんの志望している阪大ででは、それらの基礎が抜けていると命取りになります。  ただし、電磁気や原子分野に特に多いように思われますが、高校物理の知識だけでは原理や法則の体得が難しいことがあります。その場合は無理に式の導出などをする必要はなく、式とその式の意味を体得できていれれば十分ですが、それらは大抵教科書にも式の導出などは記載されていないことが多いので、とりあえず難しいことは考えず教科書の内容を他人に説明できるくらいに理解できているかを確認し、できていない場合はそこからやり直すことをお勧めします。  二つ目は、上記のことはできているがそれらの使い方を理解できていないことです。  入試物理で求められているのは物理法則や原理の理解だけでなくそれらを使って世の中の様々な現象を論理的に説明する力です。そのため、原理や法則を理解しただけでは問題が解けないのも当然の話です。したがって、原理や法則の体得ができているのであれば、それらの使い方がわかっていないのかもしれません。そこで必要なのが問題演習です。しかし、問題演習といってもただ問題を解けばいいわけではありません。初めは「良問の風」などの典型問題を多く載せた問題集をお勧めしますが、基本レベルの問題集で原理や法則の基本的な使い方を学ぶ必要があります。最初はあまり解けないかもしれませんが問題ありません。大切なのはそのあとです。解説をしっかり読み、なぜその原理や法則を使うのか考えてください。例えば、  ・なぜこの問題では運動方程式ではなく力学的エネルギー保存則を使ったのだろうか  →運動方程式を用いて解く場合には質点の位置の時間変化の情報が必要だけど運動を始めた時と終えた瞬間についての情報しかない  →力学的エネルギー保存則が成り立つ条件では最初と最後の情報さえあれば解けるからこの解法になったのか! といったように復習することが必要です。もちろん、最後の文章にある「力学的エネルギー保存則が成り立つ条件」というのは教科書の内容を理解できていれば説明できると思いますし、できなければ教科書に戻って該当分野の復習をする必要があります。  一つ注意してほしいのは、教科書の内容の体得も、問題演習を通した基本的な解法の体得も、「教科書・問題集を〇〇周すればよい」というのはやめるべきです。極端なことを言えば、一周しただけですべて身についてしまえば復習の時以外に解く必要はありませんし、五周しても身についていないのであれば該当部分を中心に六周する必要があります。  どちらかに当てはまっていないか確認してみてください。  参考までに、次のステップについても少し述べておきたいと思います。  「名門の森」や「重要問題集」、「阪大の過去問(青本をお勧めします)」などを使ってより複雑な問題に対する原理・法則の使い方を身に着けてください。ただし、過去問はこれらに加えて問題の傾向や難易度の分析も忘れずに行ってください。  浪人中に実際にこの勉強法を実践したからこそ、とても大変な要求であることは誰よりもわかっているつもりですが、少しでも参考になると思っていただければ嬉しいです。長文になりましたが、最後まで読んでいただきありがとうございました。受験勉強頑張ってください!応援しています!
東北大学工学部 カズ
3
0
物理
物理カテゴリの画像
物理と化学についてです!
はじめまして!やきそばといいます。 質問について ①演習量について物理化学それぞれ分けて、 ②微積を用いた物理について、 回答していきます。 ①まず物理ですが、先生の仰る通りテキストを完璧にすることが重要だと思います。物理は定義や基本の原理原則を抑えていないと、どれだけ演習をしても伸びにくい科目です。まずはテキストで原理原則などを理解してみてください。演習は、テキストの復習としてリードαで感覚を掴んだ後、名問の森に移るなどがおすすめですが、微積物理であれば新物理入門問題演習という問題集がおすすめです。 次に化学ですが、理論・無機・有機全ての分野で演習量がものを言う科目です。授業の後に基本的な問題集(リードαやセミナーなど)で復習して、重要問題集、そしてそれが8割程度できるようになったら化学の新演習などでたくさんの形式の問題に触れるといいと思います。 ②微積物理ですが、一番重要なのは数式の意味を理解すること、です。なぜ運動方程式を積分するとエネルギーの関係式になるのか、なぜモーメントの関係式を積分すると角運動量の関係式になるのか、など意味や理由が分からないと、どの問題でどのような操作をするのか(微分や積分をするのか、しないのか)が分からないのでぜひ理解してください。 慣れも必要ですが、慣れるためと言って理解を怠って問題演習ばかりしていると、微積を利用する良さが消えてしまうので気をつけてください。私が利用していた新物理入門問題演習には、問題の前に軽く式の関係性が書かれていて非常に良かったのでおすすめです。 他に気になることがあればメッセージ送ってください! 限りある時間で工夫して勉強頑張ってください、応援してます!
東京大学理科一類 やきそば
36
5
物理
物理カテゴリの画像
理科科目を固めるには
こんにちは、理工学部で主に物理学を専門に勉強している者です。 もし化学が安定しているようであれば、駿台文庫の「原点からの化学」シリーズはおすすめできます。それなりの化学の知識があれば、その知識をさらに掘り下げつつ、文字通り「原点から」展開されゆく化学体系に感動するでしょう。特に「化学の計算」、「無機化学」に関しては、問題を解くにあたってすぐに勉強効果が発揮されると思います。 それでは物理に関して、おすすめの参考書などを紹介すると同時に、演習するにあたって心がけると良いことを詳しく解説させて頂きます。 今でこそ物理学を専門にする程度には物理に詳しいものの、自分も物理には苦労した身です。かなり説明が長くなってしまいましたが、自分の物理の勉強経験を踏まえ、しっかりと書きましたので最後まで読んでいただけると幸いです。 すでに教科書レベルの物理を勉強されたならご存知の通り、物理学は森羅万象をなるべく簡潔な形式で記述しよう、という学問です。例えばすでに勉強されたであろう力学であれば、ニュートンの運動の三法則がこの簡潔な記述に当たります。しかし、 「加速度の大きさは,力の大きさに比例し,質量に反比例して, m →a = →F が成り立つ。」 とだけ言われて、そうかそうかと理解できる人はいません。物理における演習は、こうしたあまりにも抽象的に記述された法則を、実際の問題に当てはめることによって具体的に理解しようとする営みであることを心掛けて下さい。 そこでまずは簡単めの問題集を使って多くの演習を積みましょう。とは言えあまりに問題数が多くては疲れます。エッセンスを既にある程度勉強されたのであれば、同じ著者の出している「良問の風」はおすすめです。必要にして十分な基礎演習ができるような問題のチョイスがなされています。 演習時に心がけると良いことを、力学分野を例に取ってお話します。 先述の通り、力学では、ニュートンの運動の三法則が基盤にあります。第一法則から第三法則まで順番にそれぞれ、 1.慣性系存在の主張 2.運動方程式 3.作用反作用の法則 です。 特に問題で直接使うのは2と3でしょう。問題文を熟読しましょう。与えられた装置に関して、 ・与えられた物理量は何か?その定義は?単位は? ・そしてそれはスカラー量か?ベクトル量か? ・考えるべき物体系はどれか? ・座標はどのように取るか?(物体のx座標、時にはy座標を定めましょう) ・それは慣性系か?(非慣性系なら慣性力の考慮が必要です) ・考える物体に働く力は?(時には第三法則を使う必要がありますね、使う必要がなくとも常に作用に対する反作用が何か、答えられるようにしましょう) ・物体が質点ではなく剛体の場合、物体に働く力のモーメントは? ・そこからわかる運動方程式(第二法則です)or力のつり合いは? ・剛体の場合、力のモーメントのつり合いは? ・定量化にあたって使うことのできる近似は?(物体を質点ととらえる、糸を十分軽いとする、角度は十分小さいとする、これらは全て近似です) 徹底的に考えていきましょう。 物体が質点の場合、必ずしも力が釣り合って静止、または等速運動しているとは限りません(一方剛体の場合は力のモーメントが釣り合うケースしか基本出題されません、釣り合わない際の剛体の具体的な挙動を高校範囲では扱いません)。運動の第二法則により、力を質量で割った分の加速度が生じます。加速が分かればそこから速度と位置が時間の関数としてあらわされます(エッセンスには v = v₀ + at をはじめとする三つの「公式」が載っているはずです)。すべての力学問題に関して、a-tグラフ、v-tグラフ、x-tグラフを書いてみると良いでしょう(これらのグラフをしっかりと書くことができれば、実は「公式」を覚える必要はありません)。 しかし、複数の物体が同時に動いたり、物体が複雑な経路を経て移動する場合は、物体の位置や速度、加速度を時々刻々と追うことが困難です。そんなときには、物体の運動開始点における状態量と、運動終了点における状態量とを直接結び付けることができる保存量がありましたね、これを用いた定理がずばり運動量保存則と、エネルギー保存則です(これらは第二法則から導かれる定理です)。これを使いましょう。運動量と力積の関係、仕事と運動量の関係もしっかりと押さえましょう。 こんな風にして、物理の包括的な体系を念頭に置き、問題集に載っているそれぞれの問題をしっかりと吟味し、物理公式や定理の証明の過程に具体的な問題をそのまま適応するイメージで問題を解くことをお勧めします(←シレっと書きましたがここ一番重要です)。決して「なんとなく」公式を当てはめて、それで答えがあっていればそれでいいや、といった了見は持たないことです。それをしてしまうと少し問題が複雑になったときに使うべき公式が分からなくなり、困ります。物理の問題が解けるのには、整然とした物理体系に根差した、解けるなりの「必然性」があります。使える公式も、問題ごとに「必然的に」定まることを意識してください。決してテキトーに公式を用いて「偶然」答えを当てるゲームではないということです。 このように一問一問に吟味を重ね、一つの問題について「全て」を説明できるようになってみてください。そうして精力的に解いていくと疲れるでしょう、時間もかかります。当然問題集にもそんなに詳しい解説は載っていません。しかしこれをやり終えたとき、あなたの物理の学力はそれだけでも相当なものになっています。結果として漫然と公式を当てはめて学習するよりも勉強時間に対する学力向上のコストパフォーマンスは高いでしょう。 一応補足しますが、これは決して試験会場でも問題をしっかり吟味し、時間をかけてジリジリ解け、ということではありません。むしろここまで書いてきたような「じっくり」とした解法ではなく、問題集の解説に乗っているような「あっさり」とした解法が好ましいでしょう。しかしそうしたあっさりとした解法の背後には、そのような簡潔な解法を支える物理の壮大な体系があることを理解していただきたいです。深い物理に対する理解があってこそのシンプルな解法、ということでございます。 ここまでの内容を要約しましょう。物理の深い理解に根差した「冗長な解法」と、試験会場でサッと使える「簡潔な解法」、この両方ができるようなトレーニングを、問題演習を通じて日頃の学習の中で精力的に行ってください。 ここまで書いておいてなのですが、これらはあくまで物理の教科書に書いてあることをしっかりと理解した前提でのお話です。問題を解いていて、あるいは解説を読んでいてわからないこと、忘れていることがあればまめに教科書を読み直し、実際に自分の手で定理や公式の証明ができるようにして下さい。 こうして物理の「本物の基礎力」が身につけばあとは話が早いです。志望校の過去問に挑戦するも良し、少しレベルアップした問題集(「名問の森」や「重要問題集」、「標準問題精講」、「難問題の系統とその解き方」など)から自分に合ったものを見つけ演習するも良し、どうするかはその時また考えると良いかと思います。 最後に物理をさらに深く理解するのに役立つ、いわゆる「微積物理」の紹介をさせてください。「微積物理」と言っても、ただの数Ⅲレベルの高校数学を用いたごく一般的な物理です。使う数学も微積に限らず、ベクトル、二次曲線、指数対数関数、三角関数など様々です。「微積物理」は特に、 ・位置、速度、加速度の関係の理解 ・円運動 ・単振動 ・ケプラー問題 ・クーロン則及び電場電位の理解 ・コンデンサーやコイルがらみの回路問題 ・右ねじの法則 ・フレミング左手の法則 ・導体棒問題 ・荷電粒子の運動 ・交流理論 ・熱力学の状態変化 ・その他保存則がらみの問題全般 ・エネルギー収支問題全般 などなど、多くの事象・問題の理解に役立つでしょう。興味に合わせて勉強すれば、さらに物理の問題を鮮明に捉えることができます。例えば運動方程式を立てるだけで、エネルギーの収支が、保存が、勝手に見えてしまうようになると言った具合です。 簡単な参考書から難しい参考書まで、私が知っている範囲で一応紹介しますね。括弧で大体のレベルも書いておきます。 簡単 ↑ ・微積で楽しく高校物理がわかる本 (レベル0) ・微積で解いて得する物理 (レベル1) ・秘伝の微積物理 (レベル1) ・微分積分で読み解く高校物理 (レベル1) ・大学入試完全網羅 物理基礎・物理の全て (レベル2) ・はじめて学ぶ物理学 (レベル2) ・新・物理入門 (レベル3) ・理論物理の道標 (レベル3) ↓ 難しい ちなみに私は新・物理入門を穴が開くほど読みました。 長々と書きましたが、質問者様が以上の内容を参考にし、物理の学習に役立て、物理を得点源にすることを願います。頑張ってください。
慶應義塾大学理工学部 Euclid
4
2
物理
物理カテゴリの画像
理科がやばいです
一旦落ち着いて状況を整理しましょう。 物理は大きく分けて、力学、電磁気学、波動、熱力学、原子の5分野です。 化学は理論化学、無機化学、有機化学の3分野です。 物理の各分野それぞれ特徴があり、ポイントとなる公式とそれが用いられる状況の整理ができていれば応用はいくらでも効きます。 例えば力学で、物体に働く力を正確に解析し運動方程式を書くことができるか、保存則とは何か。モーメントとは何か。重要事項がどういうものなのかを教科書を用いてよく理解し、記憶していきましょう。一つ理解するごとにそれに関連する問題を解くと良いです。それも公式当てはめではなく、なぜその公式を使ったのかきちんと説明ができるようにしましょう。 化学は物理よりも覚えることが多いですが、同じように物質量や半反応式、飽和蒸気圧など基本を覚えていきましょう。夏までに物理は全分野の大まかな理解、化学は理論化学のインプットができれば上出来かと思われます。 夏以降はガンガンアウトプットして、無機と有機を始めましょう。オススメの参考書は名問の森(物理)と重要問題集(化学)です。 また問題が解けなくても自暴自棄にならないことが大事です。正しいアプローチは基本の理解から来るものです。問題演習で解けなかったところを、なぜ解けなかったのか明確に分析することで要領をつかんでいきましょう。
東京大学理科二類 ぱいんと
26
4
物理
物理カテゴリの画像
物理何をすればいい?
問題となっている現象を鮮明にイメージできていますでしょうか?物理と数学の一番の違いは「問題の対象が現実世界における具体的イメージを持つかどうか」です。問題を見て、使う公式を選んで、式をいじって答えを出すだけだと、どうしても本質部分が理解できず応用問題には手が出せなくなってきます。 例えば「2つの質量が同じ物体が弾性衝突する問題」はどう考えますか?多分「運動量保存」と「弾性係数の式」を連立して解くと思います。ただこれは鮮明なイメージが持てると「衝突前後で速度が交換される」ということが計算せずともわかってきます。このようにただ数式を無我夢中にいじるだけではなく、数式を使わずともわかるようなことは物理では多くあります。そのようなイメージが持てれば、実際に計算してみた結果がイメージと大きく異なる場合、計算ミスを自分で発見できる可能性があったり、計算が面倒くさい問題(例えば大まかな粒子の軌道を示す図を選べといった問題)を計算することなく正解を選べたりします。したがってただ数式にこだわるのではなく、今考えている問題ではどのような現象が起きているのかじっくり考えつつ演習してみてください。焦らずやっていくことが重要です。 一方で、数式をおろそかにして良いというわけではありません。特に公式は暗記するだけでなく、導出過程も理解しましょう。導出過程には物理現象として重要なポイントがたくさん詰まっています。ここを理解することで、先述した鮮明なイメージを描きやすくなります。 例えば、波動分野での反射の法則の導出過程はご存知でしょうか?ホイヘンスの原理というものから導出します。過去の大学入試では、このホイヘンスの原理からの導出を題材にしたものも出題されています。 とにもかくにも焦らず基本をじっくり固めていくことが重要でしょう。 参考書ですが河合塾の「物理のエッセンス」などはいかがでしょうか?自分が使っていたのはもう何年も前なので詳細は覚えていませんが、かなり公式の説明が詳しく載っており、物理の正しいイメージが掴みやすかった記憶があります。ただ記憶違いかもしれませんし、参考書は人によって好みがはっきりと分かれるため、ぜひ本屋で実際に手に取って確認してください。 稚拙な長文、失礼いたしました。
東京大学理科一類 Smith
3
1
物理
物理カテゴリの画像
物理はどの分野がいちばん大切なのか
回答させていただきます。まず、どちらを進めるかはあくまでご自分の判断に委ねられるということをご理解下さい。その上で、少々長くなりますが、アドバイスをさせていただきます。 高校物理の5分野である力学、熱、波、電磁気、原子は、基本この順で学習することになります。公式を理解するのに前の分野が必要になるからですね。では、力学は他分野の理解にどれほど必要なのか? 熱…力のつり合い、運動量、エネルギー保存則 波…単振動 電磁気…力、エネルギー、円運動、万有引力 原子…円運動、エネルギー、運動量 多少抜けはありますが、おおよそこれらの単元の公式が全て頭に入っていることが前提になっていると考えてよいでしょう。特に電磁気と力学のつながりは非常に強く、千葉大では力学と電磁気で必ず一題ずつ出題されるようなので、私からのアドバイスとしては、「力学の公式がどうしてそうなるのか理解できるまでは力学に力を入れるべき」ということになります。 ただ、公式が理解できているが難しめの問題になると解けないという場合、他分野に移っても問題ないと思われます。物理という科目は、一度コツを掴めば急激にできるようになる科目なので、分野を横断して多様な問題に触れ考える力を養うことが求められます。加えて、早期に各分野の公式が十分に理解できれば融合問題にも挑戦できるようになるので、学習効率は上がります。教科書や傍用問題集の章末問題が解ける力を付け、早々に他分野に移ってしまいましょう。 学習順ですが、力学→電磁気→熱、波という順を提案します。電磁気で登場する公式はこの順でもカバーできますし、電磁気は力学との融合が非常に多いため、力学の復習にもなるでしょう。多くの学校では10〜12月に理科の全範囲が終了しますが、できれば夏休みの終わりには熱や波まで終わらせてしまいたいところです。 一点気をつけておきたいのが、物理はそもそも自習が難しいということです。暗記中心の高校化学に比べ、数式の意味を理解するところから始める必要があるからです。なので、物理で手詰まりになってしまったら、化学に集中するか、誰か(予備校や塾、学校の先生)に質問するかという択を意識しましょう。
京都大学工学部 黒澤
3
2
物理
物理カテゴリの画像
物理のわからないを解決するには
高2で焦りを感じられるのは素晴らしいです。 物理に限らず公式は暗記して理解するのではなく、理解しようと頑張ったら自然と暗記していたという順番が好ましいです。 例えば、運動方程式F=maですが単にこの形を覚えてしまえばつかえることは使えます。しかし、力Fが同じ状況下で質量mが大きければ大きいほど加速度は小さくなる、すなわち重いものは動き始めが遅いという実際に経験できる通りの理論だと分かります。 これはこう覚える、ということをする時も私自信ありましたが、京大物理を見据えて、どうしてそうなるのかを追求することが入試の得点に繋がります。学校のテストに言及すれば公式を覚えているのに点が取れないのは単に問題演習量が足りない可能性があります。使っている問題集のテスト範囲の問題は分かるまで何度も解いて、解説を読み込む作業を繰り返しましょう。
京都大学農学部
55
0
物理
物理カテゴリの画像
電磁気の理解の仕方(あと重心速度について)
初めまして ①電磁気の原理原則の深い理解についてですが、ある程度慣れているのであれば駿台文庫の【新物理入門】を読みまくればいいと思います こちらは受験参考書でありながら高校物理の大学物理の架け橋(大学初年度に習う物理に片足突っ込んでる)となっており、高校物理で曖昧になっているところを、高校数学でわかる範囲で説明しています 電磁気の根底の原理原則理解には、大学初年度での数学知識がないと説明が非常にややこしく、受験勉強もうしなくてももう受かるわっていうほどのレベルでない限り今はやらないほうがいいので、新物理入門に書いてあるレベルの理解を目標とするのが良いでしょう ②部分的な説明になってますがそうですね 2物体1,2に対して 物体m1にかかる外力をF1、物体m2のほうをF2(どちらもベクトル)とすると、それぞれの運方の和よりd(m1v1 m2v2)/dt=F1 F2 (vもベクトル) 運動量の和をp(ベクトル和)とすると、dp/dt=F1 F2…①となりますね また、重心の座標はrG=m1r1 m2r2/m1 m2 (rは位置ベクトル)なので、sinさんのいうとおり微分して vG=m1v1 m2v2/m1 m2=p/m1 m2…② (重心速度) ここで①,②より、外力が存在しないとき、p=cost(定数)となり運動量が保存(これが運動量保存則の原理) よってvGもcostなんで、速度一定ということですね この説明も新物理入門に載っているので、ぜひ書店で見ていただいて、気に入れば購入をお勧めします💪 残りの受験勉強も頑張ってください🙏
早稲田大学先進理工学部 エムジェー
3
0
物理
物理カテゴリの画像
物理の公式をただただ暗記したくない
定理(公式)を暗記するかどうかはサクラサクさんの力量次第だと思います。 そもそも物理法則は人間が生活する中で考えた知恵を数式的に定義づけて、定理(サクラサクさんが言うところの公式)として使いやすくしているものだと思います。あんまり突っ込んだことを言うと物理の専門の方から怒られるかもしれませんが認識として持っていて欲しいのは、定義は必ず理解しなくてはいけませんし、定理を導く事ができない人は覚える(覚えるというより問題を解きながら理解する事で自由に使えるようになると言う表現の方が近いと思います)必要があります。 例えば運動方程式f=maはもともと人間の経験則からニュートンが定義したものなので覚えるのが嫌だとしたら、自分で実験をしながら導くしかないです…天才じゃなきゃ無理ですね。 定理で言うと例えば速度の式なんかは、加速度が速度の微小変化という定義さえ知っていれば定理はそれを積分すると出ますよね。(積分を習っていなければグラフ化して導出して考えると良いと思います。) どちらにせよ何度も導出している間に覚えてしまうのでそれをそのまま使うことになると思います。丸暗記でなにも考えずに公式に当てはめるのはお勧めしませんが、導出出来るものはしながら解いて慣れてきたら時間を短縮するために必要な公式を使うのが良いんじゃないでしょうか。
東京工業大学物質理工学院 yuya
9
2
物理
物理カテゴリの画像
証明や導出がすごい気になってしまう
三味線さん、はじめまして。 お気持ちはすごく分かります。 たしかに解答の細かいところに疑問を持ったり、その都度公式を導出していると参考書の進むペースは遅くなってしまいますが、その分、質は高くなると思うので全然良いことだと思いますし、むしろそうするべきだと思います。 よく言われる「数学は理解」という言葉は、なぜその公式を使ったのか、なぜその解法で解くのか、なぜその変換を行うのか、もっと細かいことで言うと、なぜその順に解答を記述するのかといったことを理解することです。 「数学は暗記」という言葉もたまに聞きますが、これは単純に英単語みたいに暗記すると言うことではなくて、どうしてこの解法を使うのかを理解した上でどうゆう問題が出たらどの解法を使うのかを暗記すると言うことです。 仮に理解の過程を飛ばして暗記だけすると、少し問題の形が変わっただけで解法が思い浮かばないということになってしまいます。 そして理解を深めるためには、三味線さんのように細かいところにも疑問を持って問題を解くのが一番の近道です。公式は導出ができる方が理解度ははるかに上がりますし、たまにある公式の導出に基づいた問題なんかも出題されることもあります。 また質問文中のことで触れると、なぜ置換積分はこうゆう形でするのか、一次独立とは何か、解答に使われている言葉の意図、こういったことに疑問をもって考えるのはとても良いことだと思います。確認しても忘れてしまうのは人間なので仕方ないことで、確認してその時に理解したことをノートなんかに纏めておきましょう。次に同じような疑問が出た時にノートを見返すことで少しずつ定着して力になっていくはずです。 私の場合だと2.3回では定着せず、5回とか10回その都度見返すことで定着し始めた感じだったので、忘れているから力になっていないと焦らずに、自分のペースで頑張ってください! 応援しています☺️
京都大学工学部 さかさか
5
2
理系数学
理系数学カテゴリの画像