UniLink WebToAppバナー画像

入試問題について

クリップ(1) コメント(0)
7/2 0:09
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

nononono

高2 神奈川県 京都大学薬学部(65)志望

駿台sαの数学に通っている理系の高2です テキスト(青チャート〜赤チャートの演習)は、なんとか自力で解くことができるのですが、オリジナルで配られるプリント(東大や京大の理系数学の改題)は全く歯が立ちません 先生からは5割〜7割ほどは解けてほしいと言われてます そこで入試問題を解く際に意識すべきこと、また応用問題への対処法や、勉強法について教えてください よろしくお願いいたします

回答

さくまる

東北大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
私も駿台のSα数学をとっていました。 プリントなどで配られる問題は、授業で習ったものをしっかり使えば解ける問題と、ある特定の考え方をするものがあります。前者は、自分の努力次第ということにして、後者について説明します。 応用問題には、応用問題の解法の定石みたいなものがあります。それが身につくまでは、自分で考えて解くのはかなり大変だと思います。一方で身につけば、6割くらいは解けるようになると思います。身につけ方としては、講習の選抜数学は、通期よりも、難しい問題で、定石を使うものが多かったので、そこで解き方を身につけました。それが1番早いのかなと思います。 頑張ってください。

さくまる

東北大学工学部

6
ファン
5.1
平均クリップ
4.8
平均評価

プロフィール

東北大工学部のさくまるです。受験時は英語と化学が得意で、数学と物理が苦手でした。受験の時は受験情報がたくさんあって逆に取捨選択が難しいと思うので、実際に色々試してわかった有効な方法をお伝えできたらと思います。クリップして見返していただけたら嬉しいです!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

数学 標準〜難問題ができない
こんにちは! 少し難しくなると解けない、というのはよくわかります。私もそうでした。私も簡単な問題は得意だったのですが、難易度が上がると全然解けなくなりました。なのでお気持ちはよくわかります。 私の場合は、難しい問題を解いて慣れようと思い、新演習を買ってやりました。新演習の難しい問題は東工大レベルの問題になります。ですが、簡単な問題も含まれており、半分ほどは標準レベルの問題になります。なので、質問者様のレベルだと全く解けないということはないと思います。 ですので、新演習のような難しめの問題集をやってみては如何でしょうか。ただ、新演習は解説が割とあっさりしています。詳しめの解答・解説が欲しいならばやさしい理系数学などのような問題集の方が良いかと思います。私の場合は、解説が詳しいと読むのが面倒だったので、新演習が合っていました。新演習は一対一と同じ出版社なので、一対一と解答のテイストは似ています。 また、これも東京出版ですが、大学への数学もオススメです。大学への数学は月刊の雑誌の形式となっており、月によって扱う分野が変わります。例えば2021年の7月号は座標平面を主に扱っています。8月号は数列を取り扱ってます。このように、月によって扱う分野が変わるので、苦手な分野の号を買ってみても良いかもしれません。例えば、確率が苦手なら、確率が扱われている月のものを買います。苦手な分野の強化にはうってつけの参考書・問題集だと個人的には思います。 私は難しい問題に慣れようとして、難しい問題を解いていったわけですが、この方法で数学の偏差値は10以上上がりました。勿論、色んなやり方があると思いますので、私の方法はあくまでそのうちの一つの方法です。この方法を試してみて、違うなと思ったらやめていただいて良いです。また、参考書・問題集の好き・嫌いもあると思うので、書店で色々見てから購入した方が良いと思います。 東工大の数学は難しいですが、配点が高いため最も重要な教科と言えます。頑張って下さい!!
東京工業大学第三類 たまちゃん
23
8
理系数学
理系数学カテゴリの画像
応用力
入試の数学の問題には2パターンあると思っています。 1° パターン化された問題(典型問題) 2° パターン化されていない問題 です。そんなに難しくない問題を出題する大学では、1°の場合が多く、1°の対策としては解法を覚えてしまうという手段があります。 しかし、いわゆる難関大は1°よりも2°を出題しないと受験生間で差がつきません。よって2°を出題します。 2°の問題は解法を覚えても意味がありません。では2°を解くためにはどのようなことをすればいいのか? 数学の問題を解く際、 問題を理解→解くための計画→計画したことを実行→自分の答えを見直す という流れで問題を解いていきます。 1°の問題では暗記している場合、 覚えていることを実行→自分の答えを見直す という解き方をしているため、2°に太刀打ちできません。 2°の問題を解くには 問題を理解→解くための計画 をする練習が必要です。 そのためには、 まずチャート式などの数学の基本事項が分かっている、理解している必要があります。 それを2°タイプの問題を解いて練習を積み重ね、思いつく手段を実行し、基本事項を組み合わせて問題を解いていきましょう。 数学は暗記する部分もありますが、それだけでは難関大には対応できません。頑張ってください。
京都大学薬学部 ちぇるゆう
4
0
理系数学
理系数学カテゴリの画像
数学のできる人
初見の問題が解けるようになる数学の勉強法について話しますね。 まず、初見の問題は大きく分けて2つあります。 ① 基本問題だが自分にとっては初見 ② 応用問題で多くの人にとって初見 まず、①について 基本問題の演習を繰り返し、基礎固めをしてください。 具体的な方法は下に書いておきますね。 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、『オススメ教材』ですが 全範囲を満遍なくカバーし、数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 なおかつ、問題を解くときの考え方まで紹介しているので、基礎固めはこの教材を何周もすれば十分です! 基礎がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! この演習用として ・1対1対応の数学 ・プラチカ ・やさしい理系数学 などがオススメです! 次に『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください!
慶應義塾大学理工学部 チェンパン
83
8
理系数学
理系数学カテゴリの画像
応用問題を解けるようになるには
各大問の最後の問題は大抵それまでの小問をうまく利用すれば解けます。例えば、整数問題などで最初に具体的な数値を求めたりさせることがありますが、あれは実験によって何かしらの法則を見つけさせることが目的であることも多いです。小問が何のために設置されているか意識的に考えてみるのも良いと思います。 逆に完答できたのはなぜか、どういう思考をしたのかを研究するのも良いと思います。 また、問題量をこなすようになれば、自然と問題の解法が浮かんだりもしますので、焦らず演習を積んでください。以下おすすめの問題集です。 新数学演習 難易度高め。入試問題の難〜最難レベルを扱っています。問題量も多めですので演習量を積むにも良いです。 大学への数学 東京出版の月刊本。巻末の学力コンテストの難易度は凄まじいですが、挑戦してみるのもいいかもしれません。また、大数模試(スタンダードコースか最難関コースのいずれか)が掲載されており、最難関コースは難易度も適切で制限時間も設定されているので、模試を解く感覚でやってみてください。 青本 東京大学へのパスポート(駿台文庫)という東大実戦の問題集があります。同じようなものが河合塾からも出ています。 過去問 東大の数学50ケ年(聖文出版)などがあります。コロナ禍で倒産したので、Amazon等のみで入手できる可能性があります。50年分、前期と後期の分が掲載されています。解答はありますが、解説は付いていないのでわからないところは先生等に聞くといいかもしれません。 参考になりましたでしょうか? 模試で解けなかった問題は解説を見て、応用可能なポイントを理解するように心がけてください。また、普段は、難易度の高い問題を何日かかけて考えてみたり、他の解法を色々思い浮かべてみたりしても良いと思います。
京都大学医学部 Yu
42
4
理系数学
理系数学カテゴリの画像
どうすればいいのか分からない
まず、この時点でチャートの例題が解けるようになっているのは素晴らしいと思います👍 基礎力は着実についてきていると思うので全く悲観しなくて良いです。 どういう所で点を落としているのかわからないですが、どの分野も青チャートの例題はほぼ解ける状態だとすると、その先の訓練が少し足りていないのかなと思います。 具体的には「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけることです。 (ここでいう基礎知識というのは、青チャートの例題1つ1つが扱っているポイントのことです。) 入試問題は 🔆「青チャート例題レベルの基礎問題」 🔆「少しひねってあるが、青チャート例題レベルの基礎知識を組み合わせたり、発展させたりすれば解き切れる標準問題」 🔆「基礎知識だけでは解きにくく、最後に回すべき難問」 の3つに大別されます。 入試本番は全5問がどの種類なのかを見極め、解く順番を決めた上で、上記の基礎問題と標準問題を解けるところまで解き切る必要があります。 基礎問題はほとんどの受験者が解ききれ、標準問題はそれ以前の勉強によって差がつき、難問は極めて少数の人間しか試験時間内に解けないため、標準問題をどれだけ解けるかが勝負となります。 では先述の、「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけるには何をすれば良いのか? その答えが過去問演習になります。 普通の参考書ではダメなのかと思うかもしれませんが、一般的に難しいとされている参考書は、ここでいう標準問題だけを集めたものが多いです。 なので、こういった参考書だけでは実際に入試で出る基礎問題や難問の手触りが学べません。 また、過去問と同じ問題は出ないと思われるかもしませんが、ポイントとなる部分が同じ、つまり傾向に沿った「似た」問題はよく出るので、過去問演習はとても効果的な志望校対策といえます。 早めに過去問演習を始めた方が、より早く自分の弱点に気づくことになり、余裕を持って対策を立てられるので、今から取り組み出して良いかと思います。 具体的な進め方ですが、はじめのうちは、得意な分野からでも、近い年度からセットで解いていっても、好きなように進めればいいと思います。(直前期の演習用に、最近の2、3年度分は残しておくことをお勧めします。) 時間制限も秋ごろまではかけなくていいと思います。 とにかく、 🔆その問題がどの種類の問題なのかを考える (多くの過去問集には難易度指標がついているのでそれを参考にしてください。鉄緑のものが詳しくて良いと思います。) 🔆標準問題を通して基礎知識の応用方法を吸収していく (重要なポイントをまとめているのはとてもいいと思います!自分も大事だと思ったところをルーズリーフに書き溜めていき、試験前にはファイリングしたものに目を通していました。) 🔆基礎問題や標準問題が解けなかった場合、どうして解けなかったのかを考え、次に同じようなところで詰まらないようにするにはどうすればいいか考える 🔆基礎知識の抜けに気付いた場合は、適宜チャートを見返したりして復習する といったことを意識して進めてください。 注意点としては難問の復習に時間をかけすぎないことです。必要最低限の知識だけ吸収してとばしましょう。 色々と書きましたが、この辺りのことは「受験の叡智」という本に、より詳しく、説得力のある形で書かれているのでぜひ読んでみてください!
東京大学文科二類 にゃん
7
6
文系数学
文系数学カテゴリの画像
数学の基礎固め
Focus goldを使ったことがないのですが、問題量が多く、そこそこ難易度の高い問題も掲載されていることと思います。 まず、点数の取れていない分野(IAなのかIIBなのか、さらに細分化して確率なのかなど)を明確にしてみてください。それで、特定の分野が弱い場合にはその分野だけ、例題と演習を行うことをおすすめします。 逆に特定の分野が弱いということがないのであれば、おっしゃっている通り、例題を解いてみてください。この場合、短期間で(例えば2~3週間)一気に一通り解いてみてください。少なくとも一問につき20~30分は考えてください。例題の中にはやり方を知っていないと解けない問題も必ずありますから、仮に解けなくても気にする必要はありません。 具体的には 1周目→全問 2周目→全問(解けなかったものをチェック) 3周目→解けなかったものだけ(さらに解けなかったものをチェック) 4周目→解けなかったものだけ といった風にしてみてください。 これで慣れたら、演習問題やこれらの問題が混ざったもの(総合演習的なもの)を解いてみてください。 補足ですが、少ない問題数で復習等をしたいときには1対1対応の演習(東京出版)がおすすめです。良問が揃っており、一単元ごとの問題数も多くないので、短期間で復習と確認が行えます。 このような回答でよろしいでしょうか? また質問等あればおっしゃってください。
京都大学医学部 Yu
0
1
理系数学
理系数学カテゴリの画像
京大2次数学
青チャートからいきなり二次試験を解いたときにギャップがあるのは自然なことで焦る必要は全く無いです。 実力強化問題集はあまり聞いたことがありませんが少し難しい網羅系のようですね。これはいわゆるインプット系の問題集であって青チャートが完璧であるならば必要無いように感じます。それならば文系プラチカなどで少し難しい問題を実際に解いてインプットしたものを試していく方がいいですよ。そこで予選決勝法などの教科書にのっていないような受験テクニックなどもある程度はカバーできるはずです。 解答を見て納得することも大事ですが自分で最初に思いついた方法で解ききれないか周りの人に質問することも大事だと思います。あくまで解答は最短経路が示されているだけであり解答と違っても自分の考えが間違ってるとは限りません。解説の解法が鮮やかすぎて解けるわけないだろって思う問題に出会うのもよくある話です。 受験数学とは基本的に慣れていけば何とかなるものです。もし全く二次試験に手が動かない場合は実力強化問題集で更に少し難易度の高い類題に触れておくという作戦も有効だと思います。2週もできれば確実に自信につながると思いますし。 この時期に青チャートが固まっているというのは他の受験生に比べて少なからずリードしてますよ!頑張ってください。
京都大学工学部 ちょま
3
1
文系数学
文系数学カテゴリの画像
数学 難問
私はそのような問題の解説を読むとき ・なぜここでその公式を用いようと思ったのか ・なぜ他にも可能性が考えられる方針ではなく、その方針にしたのか(どこがポイントで方針が決められたのか) を考えながら読み、自分でルーズリーフにまとめて書いていました。 また、長期休みなどの区切りの時期にそのまとめた問題を全部解き直しし、何も見ずにその問題たちが解けるまで何回も繰り返していました(これは解法暗記になってたかもしれないですが、類題に気付きやすくはなったので、損はしてないかなと思います!)。 自分で書き出した解説は、数学の塾の前や模試の前などにみて、一種の解法の流れの暗記みたいなのをしてました。 少しでも参考になれば嬉しいです🙇‍♀️
東北大学医学部 no_cloud
21
5
理系数学
理系数学カテゴリの画像
2次数学との間
こんにちは。九大医学部のものです。2次数学の問題を解けるようになるためには、ある程度の慣れと深い理解が必要になってきます。 問題には大抵決まった形式があります。点の存在範囲の問題であったり、漸化式の問題であったり、それらはある程度パターン分けすることができます。 それらを経験していくことが大切になってきます。 そのためには、問題のパターンをある程度知る必要があり、多く良問を解いていくことも必要です。 私は月刊大学への数学であったり、過去問を解いたりしていました。 しかし、完全に暗記すれば良いという訳ではありません。定石を知り、自身で定石を考え、問題を分析すると同時にその論理展開が何故なされたのかということを自分で考えることが大切になります。そうすることで、様々な問題に対応できます。 2次数学をとくには実践的に問題演習をして、その問題について分析することが必要不可欠だと思います。 頑張ってください!
九州大学医学部 sei108
0
1
文系数学
文系数学カテゴリの画像
模試 数学
青チャートだけですと基本的な問題(小問集合や各大問の前半部分)は解けても後半の応用問題を解くのは難しいでしょう。数学的なセンスがある人であれば青チャートだけでも解けるのかもしれませんが。。 個人的には青チャートとは英語でいうと単語帳や文法書のようなイメージです。青チャートとは二次試験のような応用問題を解くための問題集ではなく基本的な問題の解法を身につけるためのものです。つまり共通テストであれば青チャートだけでも満点近く狙うことはできますが難関大学の二次試験となれば青チャートだけでは太刀打ちできません。 応用問題を解くためには青チャートで身につけた基本問題の解法を組み合わせる、あるいは知っている解法が使えるように式変形、論理展開を進めていく必要があります。 青チャートだけではこの力はほとんど身に付きませんので駿台模試で点数は期待できないです。 この力は二次試験レベルの問題集を解くことでしか身につけることはできないです。 本題の青チャートの使い方に関してですが使い方は間違っていないと思います。全ての問題に関して問題文を読んでノータイムで解法が浮かぶレベルまで全ての問題を仕上げてください。そこまでして初めて応用問題への挑戦権が得られます。 具体的な使い方は間違えたものを繰り返し解いて解答を自力で作成していくのがよいでしょう。 頑張ってください!
大阪大学工学部 T.T
10
2
文系数学
文系数学カテゴリの画像