3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],""] 7:I[231,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],""] 8:I[212,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] f:I[490,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"GoogleAnalytics"] 4:["id","taFl8szW52MFD6kHrUjr","d"] 0:["sMF7Qq1oKpjYXR2YeUmJs",[[["",{"children":["advice",{"children":[["id","taFl8szW52MFD6kHrUjr","d"],{"children":["__PAGE__?{\"id\":\"taFl8szW52MFD6kHrUjr\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["advice",{"children":[["id","taFl8szW52MFD6kHrUjr","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","$L6",null,{"async":true,"src":"https://securepubads.g.doubleclick.net/tag/js/gpt.js","crossOrigin":"anonymous"}],["$","$L6",null,{"id":"google-ad-manager","children":"\n window.googletag = window.googletag || {cmd: []};\n googletag.cmd.push(function() {\n googletag.defineSlot('/102643165/pc-under_title', ['fluid'], 'div-gpt-ad-1749012831201-0').addService(googletag.pubads());\n googletag.defineSlot('/102643165/unilink_web_under_advice', ['fluid'], 'div-gpt-ad-1749138434339-0').addService(googletag.pubads());\n googletag.pubads().enableSingleRequest();\n googletag.pubads().collapseEmptyDivs();\n googletag.enableServices();\n });\n "}],["$","body",null,{"className":"__className_36bd41","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/85d7fb81f313170a.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"暗記数学について | UniLink"}],["$","meta","3",{"name":"description","content":"今青チャート始めようとしてるんですけど、暗記数学の定義ってなんなんだろうってふと思いまして、例とか用いて説明してくれる方いませんか"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3903,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"ClientInfo"] 14:I[2798,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdUnderConsultation"] 15:I[2582,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdviserInfo"] 16:I[9083,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdviserProfile"] 17:I[7060,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdUnderAdvice"] 18:I[3194,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"CommentPostButton"] 19:I[6411,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"CommentItemAvatar"] 1a:I[6549,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"CommentItemName"] 1d:I[3866,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdOnAdviceList1"] 1b:T10ae,こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。 1c:Tf07,こんにちは 青チャートを使った数学の勉強方法についての質問ですね! 私も受験期に青チャートを使っていたので具体的な方法や考え方についてお伝えできたらと思います。 結論としては指針を暗記する勉強方法で問題はありませんが、暗記する際に(特にコンパス3までの問題を)なぜその指針が思いつくのかを”理解・整理”したうえで暗記しましょう。 ***闇雲に暗記はあまり良くありません(本当に全部暗記できるならいいですが)。*** 詳細な説明に入る前に少し本筋からそれますが大事なことなので書かせていただきます。これは多くの科目に関して言えることですが、“学習の初歩は暗記“です。言われてみると当たり前のことですが、暗記を避けて何かを学ぶことは非常に難しいです。昨今“理解をすることが大事(暗記はよく無い)“という考え方が広まっていて、私自身その考え方は全てが間違っているとは思いません(実際いわゆる難問を解く際に理解は大事です)。”しかしこの理解はある程度の暗記を前提としています”。チャートで言うならコンパス3を理解するにはコンパス2の暗記は必須と言えるでしょう。わかりづらい文章になってしまい申し訳無いですが総じて何が言いたかと言うと”“暗記と理解は表裏一体“”ということです! このことを念頭に以下の説明を読んでいただけるとうれしいです では具体的にどのように学習していくかですが、まずはコンパス1.2の問題を暗記しましょう。このレベルはある意味知らなければどうしようもない問題やより難しい問題を解く際の前提知識となる問題が多いです。このステップを完了したら次にコンパス3.4(5)を自分の志望校のレベルに合わせて進めていきましょう。 質問者様の志望校レベルだとコンパス5までやる方が良いと思います。この時先ほどの説明したように、理解と暗記を同時にしていきましょう。 今回は具体例を挙げてみます。数学3の積分では様々な関数の積分を扱います。この時コンパス1.2はsin.cos.logやx^nなどの基本的な関数の積分を扱うと思います。ここを学習する際は最初は微分の逆演算という考えに従って丁寧解いていくと思いますが次第にどの関数を積分するとどうなるかというのは頭に入ると思います(自然な暗記)。その上でコンパス3.4を解く際にはsinやlogの積分は覚えている、ではどうやってその覚えている積分の形(ないし容易に積分できる形)に変えていくかという考え方で解くと難しい問題もすんなり解けると思います(積分の理解)。分数の形なのかはたまた何かの微分がくっついている形なのか(ここの説明は勉強を進めていくとわかると思います!)などといった見方ができると良いです。他にもベクトル、複素数、図形と方程式をそれぞれ独立した分野として学習するより、覚えていくうちにそれぞれの繋がりを理解できると数学を武器にできると思います! ここまで読んでいただいてありがとうございます。少し質問されたことと回答がずれてしまっている気もしますが(すみません)””暗記と理解はセット””です! 数学以外にもこの考え方は適応できるので、ぜひ学習する際に意識してみてください!! 受験勉強応援しています♪1e:Tc25,まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。 1f:Tbdd,答えを写経する勉強は、不合格者の典型例です。(自分もそれで一浪しました) 数学の問題を解く上で、絶対に押さえておくべきポイントがあります。 ・求めたい答えは何か(xの範囲、〜となる条件、グラフなど) ・与えられた条件は何か(xは-1〜5の〜、aは実数など) ・条件から答えを引きずり出せる手段は何か (解と係数の関係、判別式、次数下げなど) この答え、条件、手段の3セットが揃えば、数学の問題は解けます。 問題が解けないときは、このうちどれかがわかっていないのです。 数学の勉強法としては ・まず問題文を読む 求める答え、ゴールを確認して、それから与えられた条件を探します。 数学における情報、条件は日本語の問題文に翻訳されているので、じっくり考えないと見つからないこともあります。 ・条件と答えをどう繋げるか考える 与えられた条件、目指すべきゴールがわかったら、答えを出せる手段を考えます。 これで手段が思いつけば、実行して計算して終わりです。 わからない場合、長く考えなくていいです。答えと条件を洗い直してダメなら、潔く模範回答を見る。 わからないものはどれだけ考えてもわかりませんから。 ・解説を見て分析する ここが数学の勉強のメインです。ここ以外を多少おろそかにしてでも、ここだけはたっぷり時間をかけてください。 解説を見れば、正しい答え、条件、手段がわかります。 このうちどこで自分が詰まったのか、何を知っていれば解けたのか、ここを確認して、記録しておきましょう。 この分析を繰り返せば、整数やベクトルなどの各分野における自分の苦手なポイント、知識が蓄積されます。 そしてこの分析を半年も続ければ、高校数学の出題パターンが見えてきます。 出題範囲も問われる技能も決まっている以上、どれだけ問題が多くとも問われる内容は一定のパターンにはまってくるのです。 ・復習でもう一度解き直す これは2週目からの話ですが、正直チャート例題を高2中に一周できるか怪しいと思います。無理に2週目を目指すより、まずは納得できるまで一問を分析すること。高2中に一周できなくとも構いません。 問題のレベルは例題だけでいいです。チャートはとにかく量が多いので、例題だけでも十分すぎるくらいです。 英語に関しては単語をやりつつ、文法、語法を周回するくらいでいいと思います。高2でそこまでできるだけでもすごい。 英語は数学以上に復習と周回が大事ですから、覚えたところは飛ばしつつバンバン周回しましょう。2:["$","main",null,{"className":"px-4 pt-4 pb-4","children":["$","div",null,{"className":"max-w-3xl mx-auto w-full","children":[["$","div",null,{"className":"mb-8","children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/h6xeh63x?advice=taFl8szW52MFD6kHrUjr","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"mb-4 rounded"}]}]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"暗記数学について"}],["$","div",null,{"className":"flex justify-between mb-4","children":[["$","div",null,{"className":"text-left text-xs text-caption","children":["クリップ(",4,") コメント(",3,")"]}],["$","div",null,{"className":"text-right text-xs text-caption","children":"1/23 1:09"}]]}],["$","div",null,{"className":"coach-mark mb-4","children":"UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。"}],["$","div",null,{"className":"mb-4","children":["$","$L13",null,{"clientImageUrl":null,"clientUserName":"二郎","infoString":"高2 広島県 九州大学経済学部(58)志望","adviceId":"taFl8szW52MFD6kHrUjr"}]}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","consultation-part-0",{"children":[null,"今青チャート始めようとしてるんですけど、暗記数学の定義ってなんなんだろうってふと思いまして、例とか用いて説明してくれる方いませんか"]}]]}],["$","div",null,{"className":"pt-4","children":["$","$L14",null,{}]}],null]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"回答"}],["$","div",null,{"className":"mb-4","children":["$","$L15",null,{"adviserImageUrl":null,"adviserName":"あやた","adviserDepartment":"九州大学理学部","adviceId":"taFl8szW52MFD6kHrUjr"}]}],["$","div",null,{"className":"coach-mark mb-4","children":"すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。"}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap mb-4","children":[["$","div","advice-part-0",{"children":[null,"こんにちは。受験数学は暗記とよく言われますよね。私の考える暗記数学の定義とやり方について説明します。\n\n私は、暗記数学とは「ある特徴を持った数学の問題に対処出来る解法パターンやテクニック、公式などを答えを見て覚え、その知識を使って解く数学」だと考えます。\n\n例を用いて説明しましょう。例えば数学Aの数学と人間の活動(旧:整数の性質)で、「x+y+z=xyzを満たす自然数x, y, z(ただしx