UniLink WebToAppバナー画像

数学の解法暗記

クリップ(5) コメント(2)
5/7 11:04
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

堕落のプロ

高3 岐阜県 名古屋大学法学部(63)志望

高校数学になると中学の頃と比べて、当然ながら知識が増えるので様々な角度からのアプローチがあって、解法も一様じゃなくなるじゃないてすか。 これは判別式からも考えられるけど微分の考えも使えるな…みたいな。 そんな時って全部の解法を理解、及び暗記(実際に使えるようにする)する必要があると思いますか? それとも色々手を出して逆に混乱してしまうから一つの解法だけでいいと思いますか? 拙文で申し訳ございません。 誤字脱字、不適切な表現等あるかもしれませんがご了承下さい。

回答

kai3140

名古屋大学医学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんばんは。 高校の数学は、おっしゃる通り、中学までの数学と比べると、様々か角度からのアプローチができるようになります。ですが、(少し厳しいことを書くかもしれませんがお許し下さい)名古屋大学を受験するにあたって、解法を一つしかわかっていないようでは、合格への道はかなり遠いと思います。 といいますのも、名古屋大学の数学の入試は文系理系問わず、試験当日全員に、問題冊子、解答用紙に加えて、数学公式集が配布されます。(もちろん公式集には全ての公式が掲載されているわけではありませんが)数学の入試で、公式集が配布されるということは、つまり、「ただ単に、公式に代入して、答えが求められる」ことのできる人を大学が求めているわけではないでしょうし、そのような人が有利な採点はなされないという大学側からのメッセージではないかと思います。 このように考えますと、解法を何通り覚えたかではなく、なぜその公式・定理を使うのかということの方が大切だと思います。ただし、いきなりなぜその公式・定理を使うのかということを意識するとハードルが高すぎる可能性もありますので、まずは、複数解法のある問題に関しては、どの解法が最も計算が楽かや、どの解法が最もミスをしにくいかというような意識で、最終的には「解き方を暗記する」のではなく「なぜその公式・定理を使うのか」というような意識で数学を学習していくといいのではないかと思います。 まだ3年生の5月です。現段階で、駿台模試でC判定をお持ちであれば、このままの調子で勉強していけば、合格できると思いますよ。頑張ってください。

kai3140

名古屋大学医学部

12
ファン
5.1
平均クリップ
4.8
平均評価
メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(2)

堕落のプロ
5/7 11:25
回答ありがとうございました。 初めての投稿だったので慣れない部分もありましたが回答頂けて嬉しかったです。 回答も大変参考になりました!
kai3140
5/8 0:36
参考になったようで何よりです。頑張ってくださいね。

よく一緒に読まれている人気の回答

数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
221
26
理系数学
理系数学カテゴリの画像
数学の勉強法
東京大学に所属している者です。 数学力を身につける上で最も重要になってくるのが、「模範的な思考のインプットとアウトプット」です。これだけでは分かりにくいと思うので、「問題を解いた後にするべきこと」と、「何故それをやった方が良いのか」というのを以下で述べていきますので、是非参考にしてみてください。 まず、【どうしてその解答・解法になるのか】を一文・一式ごとに意識しながら解いた問題の丸つけや復習をしましょう。これは数学に限らず他の科目でもするべきではありますが、特に数学の場合は、「どうして模範解答は最初にこの方針を立てることができたのか」「どうして模範解答はここでこの式変形をしているのか」「どうして模範解答はここでこの定理を使おうとしたのか」など、言い始めればキリがないです。このような普通であれば見逃したり流したりしてしまうような細かいことにまで意識を向けることで、「解答へのアプローチの模範的な思考」をインプットすることができます。 次に、【丸つけや復習をした問題を翌日に何も見ずに解く】というステップに移ります。こうすることで、前日にインプットした「解答へのアプローチの模範的な思考」をアウトプットする練習ができます。必ず昨日考えていたことが自然にドンドン思い出されるので、復習がただの流れ作業にはならず、効率的な数学の勉強になるはずです。 少しでも参考になれば幸いです。
東京大学文科三類 Mx
32
6
文系数学
文系数学カテゴリの画像
数学の学力の伸ばしかた
東京大学に所属している者です。 数学力を身につける上で最も重要になってくるのが、「模範的な思考のインプットとアウトプット」です。これだけでは分かりにくいと思うので、「問題を解いた後にするべきこと」と、「何故それをやった方が良いのか」というのを以下で述べていきますので、是非参考にしてみてください。 まず、【どうしてその解答・解法になるのか】を一文・一式ごとに意識しながら解いた問題の丸つけや復習をしましょう。これは数学に限らず他の科目でもするべきではありますが、特に数学の場合は、「どうして模範解答は最初にこの方針を立てることができたのか」「どうして模範解答はここでこの式変形をしているのか」「どうして模範解答はここでこの定理を使おうとしたのか」など、言い始めればキリがないです。このような普通であれば見逃したり流したりしてしまうような細かいことにまで意識を向けることで、「解答へのアプローチの模範的な思考」をインプットすることができます。 次に、【丸つけや復習をした問題を翌日に何も見ずに解く】というステップに移ります。こうすることで、前日にインプットした「解答へのアプローチの模範的な思考」をアウトプットする練習ができます。必ず昨日考えていたことが自然にドンドン思い出されるので、復習がただの流れ作業にはならず、効率的な数学の勉強になるはずです。 少しでも参考になれば幸いです。
東京大学文科三類 Mx
8
6
文系数学
文系数学カテゴリの画像
一橋社会志望 数学の参考書の進め方
こんにちは! 数学の勉強について、2点お話しします。 ①文系最高峰と言われる一橋数学のレベルでも、典型的な解法の充実が最も大切です。一橋大学の数学は一見すると解法が全く思いつかないような問題でも、図式化したり具体的な値を代入して考えてみたりすることで基本的な問題に帰着することがよくあります。基本的な問題に帰着というのは基本レベルの網羅系参考書に載っているような考え方で最後答えに辿り着けることがあるということです。そのためには基本的、典型的な解法にすぐ反応できるようにしておく必要があります。(具体的に典型解法とは青チャートのコンパス3個分ぐらいのイメージです。)このレベルの解法は網羅系参考書で何度も何度も繰り返すべきだと思います。覚えるというと暗記してるだけのように思われがちですが、仕組みや原理を理解した上で典型的な解法については考えるよりも先に体が動くぐらいまでやり込むべきだと思います。質問の答えとしてはまずは確実な理解を心がけた後は忘れることをあまり気にせず、繰り返すことが大切だということです。忘れてしまうのは確かに根本的な理解が不足している場合も考えられますが、基本レベルの問題は何より繰り返しましょう。 ②夏に到達したいレベルについては、もちろん理想は偏差値も高ければ高いほどいいと思いますが、社会学部志望であれば夏前あるいは夏休み中に青チャートのコンパス3個分までが確実に備わっていればそこからの過去問演習や2次試験レベルの演習で伸ばすことが可能だと思います。何より重要なのは基礎をおろそかにしないことです。実力の足りなさや問題の難しさに動揺したり焦りを感じたりして難易度の高い演習にすぐに移ろうとはせず自分の進行度と向き合って基礎を固くすることが大切だと思います。 +α 典型解法の充実の重要性について書きましたが、一橋大学の数学は過去問演習が大きな意味を持ちます。過去と似た問題や似た考え方が出ることが今までかなりあったからです。もちろん網羅系参考書などで全ての範囲をおさえることを目指すとともに、早めの過去問演習で傾向を掴み、社会学部であれば特に出る単元にある程度集中して対策することも現実的なプランだと思います。一橋数学では、整数、確率、平面図形、空間図形、数列、微積などが頻出です。 また、質問とは直接関係ありませんが演習を解いていく上で1つのノートを作る勉強が個人的に効果的でした。そのノートには演習をやる中で間違えた部分をまとめておくものですが、間違えた問題とその解法などを書くのではありません。数学で難しいのは解法の一手目が思いつかない時全く歯が立たないことだと思います。そのため、問題を解いてて解法が思いつかず解答などをみた時にどうしたらこの一手目を思いつくかまでしっかり考えてそれをノートに書いておくのです。一手目を思いつくヒントになる問題文の文章や設定とセットで、一手目の考え方をメモしておくことで少しずつ「一手目の考え方」を蓄積していくことができ、後で見返すのにも便利です。
早稲田大学商学部 みかんZ
5
2
文系数学
文系数学カテゴリの画像
素朴な疑問
初めまして。 大学数学を理解していないと解けない問題とはどんな問題を指しているのでしょうか?私は受験生時代東北大の数学も13年分ほど解きましたが、そのように感じられる問題はなかった記憶です。 もちろん数3では高校範囲だと証明できないものがあります(中間値の定理等)。また、例えば「x>0のとき、不等式sinx>x-x^3/6を示せ」という問題であれば、不等式の右辺はどこから出てきたのだろうと思うことはあるかもしれません。 ですが総じて大学範囲を理解しなければならないことは問題にするほど多くないと思います。 私自身はこれまで数学にかなり没頭してきましたが、高校範囲で「受験勉強」として取り組んだ内容は無駄になったとは感じていません。少なくとも現在学んでいる微分積分学は数3をもっと厳密に、拡張したような話が多いですし、線形代数学は行列という新しい分野ですが、ところどころベクトルのときに学んだことが役立っているように感じます。 ですが、質問者様のように受験がそういったゲームのようになっているというのも分かります。昔中国では科挙という試験が実施されていましたが、その試験では漢詩を始めとした非常に多くのことを暗記して挑む試験でした。そして、その試験にさえ合格すれば将来は安泰どころか裕福に暮らせたようです。 現行の受験制度もある種そうなっているのでは無いでしょうか。ハッキリ言えば、高校生の勉強の受験ぐらいで上手くいかない人は「学問の学ぶ姿勢」を追求したところで自信で学び切ることは出来ないという根本的な考えがあるのだと思います。当然高校の勉強は出来なかったけど天才的な研究や発見をする人もいるのかもしれませんが、母数として多くないのは明白でしょう。 「たくさんの科目に手を出していることで、学問の本質を見失っている」という指摘については、私の意見としては「まだその指摘をするには早い」という感じですね。もちろん私がその指摘をするにもまだ早いです。大袈裟に言えば我々が寿命を迎えるときにはじめて「あの勉強はいらなかった」と思うことが出来ます。 結局この教育の根幹を作った人たちは、「幅広く学ばせて、どれかが当たればいいな」みたいな発想なのでしょう。 回答作成中に思ったことですが、数学より理科(物理、化学)の方が大学範囲を黙認することが多いですね。解く上で黙認すると言うよりは、その定義自体に黙認があったり。そもそも高校で学ぶ特に理系科目というのは、非常に限られた都合のいい場合のみ扱います。数学の条件付き極値問題であれば三角関数を使ったり線形計画法を使って上手く解けるような変数の次数になっていたり、物理の公式であればその厳密な証明が大学範囲の微分積分だったり、化学では条件が綺麗すぎたり。 学問というのは具体から始まると考えています。例えば物理学の、ニュートンの運動方程式は実験事実です。つまり実験(具体)を通して一般的に正しい(抽象)とされました。数学であれば、有名なフェルマーの最終定理がありますが、あの問題は初めからn一般について示された訳ではなく、まずはn=3,4,5と示されたのです。化学でいえば、周期表は具体→抽象の一例ではないでしょうか。 そういう観点で高校の学習を振り返ってみると、限られた場合にしか出来ないような解法、考え方であっても、今後「学問」を修めるにあたって抽象化するときに役に立つことでしょう。 以上。少々まとまりがない形になってしまい申し訳ありません。このような疑問をもてる質問者様は素晴らしいと思います。もしかしたら何かやりたい研究等があるのでしょうか。であれば私と同じですね。是非受験をパスしてやりたい学問に取り組み、貢献して欲しいですね。頑張ってください。応援しています。
北海道大学総合教育部 ちる
2
2
モチベーション
モチベーションカテゴリの画像
東大理一受かりたい
結論から言います。 数学理科現代文は過去問を解きましょう。古文は共通レベルの問題を全訳してください。英語は毎日ニュースなどで長文を読んでとにかく慣れてください。 以下に詳細を書きます。 数学は解けるならとりあえず過去問をなるべくたくさん、丁寧に日本語で方針を書くようにして解いてください。阪大、京大、慶應の問題もたまに入れましょう。とにかく経験と勘を鍛えてください。東進が簡単な解答とともに問題を無料で公開しているサイトもあります。そこでダウンロードして印刷して日々持ち歩き、暇があれば問題について考えてください。昔の問題や難しくて解くのが推奨されてないものは時間制限を無視して空いた時間に暇つぶしに進めましょう。 解く時は毎回回答と計算や思考を分けて、でもどちらも書き置きましょう。練習では暗算したものも書き置いてください。そのような工夫で振り返りの効率を上げてください。 解答の戦略についても考えておきましょう。例えば2021年、2022年の問題は難問が多すぎて大問の方針、始めの方の計算だけ書いた人が受かっています。割り切ってこのような戦略を取れるように緩く意識しておいてください。 理科はとにかく過去問を解いてください。物理は記述のコツを掴むことも肝要です。過去問集の(解説ではなく)解答や模試の返却を参考にして、時間内に解き切るのに最も最適な文章量を把握しましょう。 加えて、解ける問題に絞って挑むこと、つまり戦略も大切ですので、時間を決めて模試形式でどんどん解きましょう。 一度やった年度のものも何度も解いて大丈夫です。昔にやったやつだと多分覚えてないし覚えてたら他の年度をやっても解けます。 古文は単語と文法を毎度復習する癖をつけてください。完全な暗記科目です。共通テストレベルの文章を全訳すると十分練習になります。わからなかった部分を復習、暗記しましょう。 現代文は構造を掴む訓練をしましょう。二項以上の対立、起承転結、そう言った内容の構造を掴んで、それぞれの問題がどの部分の説明に当たるかを考えながら解きましょう。東大の現代文はそんなに難しい思考を強いてはきませんから、シンプルに考えて解いてください。 英語は慣れです。文法、スペルミスは考えるんじゃなくて違和感で気づけるようになりましょう。そのために、ネイティブが書いた英語のニュースや動画を見て理解しましょう。これをなるべく毎日やってください。10分程度で良いです。 要約問題や英作文に関しては友人や先生と協力して解きましょう。 具体的には、英作文は友達と解いた問題を交換して互いに添削し合いましょう。自分の作文の間違いは分かりにくいですが、他の人には気付けるものです。そうやって添削力=違和感に気づく力をつけてください。 各教科ごとに対策方針を挙げました。ご相談の参考書とはずれているかもしれませんが、実際に自分や周りの人が行っていた有効な方法をまとめたつもりです。 東大は8割が2次です。参考書よりも過去問が充実していますから、とにかく2次試験の問題に慣れてください。 最後になりますが、東大の試験はきちんと対策して戦略を立てれば、合格点を取ること自体は激しく難しいものではありません。全部解かなくても受かる、自分の隣の2人の東大志望より点を取れば受かると言うこと、極めて難しい問題にわざわざ立ち向かわなくても受かると言うことを意識して挑んでください。(練習ではちゃんと難しい問題も解いてくださいね。多段階の解答の形成は他の問題の訓練にもなりますし、じっくり考えることが論理力を鍛えますから。)
東京大学理科一類 さしみポン酢
23
7
浪人
浪人カテゴリの画像
ひらめきが足りない
受験数学にひらめきは全く必要ありません。 実際、数学者と数学の得意な高校生が、受験数学で勝負すると高校生が圧勝します(実話です)。一体何が、高校生を勝たせるのだと思いますか? 受験数学には、確かに、「ひらめきのようなもの」を要求する場面があります。特に整数問題などで顕著ですが。しかし、ほとんどの問題は、今まで身につけてきた解法で対応できてしまうんですね。 例えばですが、多変数関数 f(x,y)の最大値、最小値を求めよという問題が出たとします。(f(x,y)の中身は、例えば、x^2 3xy y^2などですね。ここではそれは本質ではないのでスルーします。)その時、方針が何通りかあるんですが、それを列挙できますか? あるいは、図形問題に対して、どのようなアプローチを考えるべきか説明できますか? (答えはどちらも回答の最後に載せますね) もし1つも分からない場合や、何個かしか挙げられない時は、少し補充的な勉強をする必要があります。 問題ごとに、それを解くための最適な方針がありますね。それをメモ程度で十分なので、どんどんまとめていってください。すると、多種多様に見える問題も、スタートは必ず同じことをしていたり、何個かのパターンの方針しか使っていなかったりします。本当はこういうことを分かっていくのは、問題演習を通してだんだん培っていくべきものなんでしょうが、99%の人は出来ないでしょう。僕も全然出来ませんでしたし。 なんにせよ、こういう「解法の整理」をしていくと、全く手が付かない問題はほとんどなくなってきます。途中までは行けるようになるんですね。そして、「ひらめき」は大抵こういう場面で使うものですね。例えば最後の最後に有名不等式を使ったりなどでしょうか。しかし、これすらも、方針としてカテゴライズすることが可能です。いわゆる純粋なひらめきは、受験数学においてはあり得ないといって良いでしょう。大抵、「閃かない」時は、解法が浮かばない時です。かなり具体的な問題に帰着できましたね。 僕は、ノートの見開き1ページに、この問題が来たら、この方針がよく登場する!というフローチャートのようなものを作っていましたね。頭の中が整理されていく感じがして楽しいですよ。 ちなみに、基礎ができていないということは、多少あるにせよ直接的な原因ではなく、いくら固めたところで、成果が微々たるものしか出ないので、気をつけましょう。青チャート、フォーカスゴールド、どちらも持っている時点でフル装備なので、多少の復習はもちろん必要といえども、頑張る必要はありません。 さて、先ほどの問題、わからずじまいは良くないですから簡単に 多変数関数の最大最小問題: ・等式があればxかyに代入してそれを消去する(いわゆる文字消去) ・xかyのどちらかを定数とみなし、ただの1変数関数とみなして考える(いわゆる文字固定) ・有名不等式の利用(相加相乗平均の関係、コーシーシュワルツの不等式、三角不等式など) ・逆像法 ・線型計画法 ・グラフを書いて考える Etc. 図形問題のアプローチ ・まずは初等幾何で解けないか考える。 ・次に、位置ベクトルを導入することで、内積などを利用して解けないか考える。 ・もし対称性の高い図形だったら、座標平面を設定するのも考える。 僕がこの解法整理についての対策を編み出し、始めたのは12月の半ばです。今なら相当早いタイミングから対策できますから、ぜひ過去問での得点をぐんぐん挙げて、自信をつけていってほしいと思います。 では、有意義な秋をお過ごしください!
東京大学理科一類 ひこにー
151
2
文系数学
文系数学カテゴリの画像
文系数学の参考書について
文系の数学の重要事項完全習得編と実践力向上編の両方を使用していたものです。 結論から言うと重要事項完全習得編をやりましょう。基礎問題精講と重要事項完全習得編の両方をやることで名古屋市立大学の文系数学は十分に戦うことができます。 基礎問題精講をやっているのであれば、重要事項完全習得編の例題を半分程度は初見で解けると思います。下の解答を隠して初見で解くことができれば、その問題をまた解く必要はありません。大事なのは初見で解くことができなかった問題です。初見で解くことができなかったのであれば、使う知識自体は基礎問題精講で習っているはずなので、そこからの使い方が身に付いていない可能性が高いです。その問題の解説を徹底的に読み込んで理解し、自力で解答が作れるまでやり直してください。これを繰り返すことでかなり実力が付きます。あ、初見で解くことができた問題のポイントも読んでくださいね。かなりいいことが書いてあります。 ここまでのことを今後2ヶ月ぐらい、重要事項完全習得編の練習問題を更に2ヶ月ぐらいで完成させることができれば良いペースです。共通テスト対策もあるので11月中旬までには完成させたいです。仮に早く終わって、他の科目も仕上がっているのであれば実践力向上編かプラチカ(文系ではなく理系のプラチカ)の頻出範囲からやっていけば良いと思います。 また何かあれば質問してください。
北海道大学法学部 そーた
11
4
文系数学
文系数学カテゴリの画像
初見で解けるようになるには
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
九州大学経済学部 riku
13
5
過去問
過去問カテゴリの画像