UniLink WebToAppバナー画像

初見で解けるようになるには

クリップ(13) コメント(1)
9/18 13:14
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

あ、か、

高3 群馬県 早稲田大学基幹理工学部(65)志望

高3です。 過去問を解いているとき解き方が思いつかないことが多くあるのですが、解答をみたらすんなりと理解できます。 自分自身では、発想力か問題演習が不足しているのが原因だと考えています。 どうすれば初見で解けるようになるのでしょうか? 先輩方の意見が聞きたいです。よろしくお願いいたします。

回答

回答者のプロフィール画像

riku

九州大学経済学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
回答者のプロフィール画像

riku

九州大学経済学部

47
ファン
8.1
平均クリップ
4.8
平均評価

プロフィール

九大の経済学部(理系)に通っています! 現役独学でした!福岡出身です! ぜひクリップ📎お願いします!😊 精神論的なことや抽象的なことは言わず具体的に回答致します!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

あ、か、
9/18 16:07
とても不安だったため回答してくださりありがとうございます。 間違えた問題はチャートや今までやった参考書などに似た問題がないか見つけて勉強してみます。

よく一緒に読まれている人気の回答

一橋数学
ある程度の数学の基礎は身についていると思うのでその先の勉強方法について話したいと思います。 数学の難しい問題というのは解き方の展望が見えてこないものが多くあります。なので、正確に文章を読んで、文章の中からヒントを拾ったり、式の形をみて、使えそうな公式や、定石となる解き方を考えてみることが必要になります。おそらくランボさんはこのようにして、いくつか選択肢に上がった解法の中に正解となる解法があったのにそれが使えなかった、ということだと思います。しかし解き方を思いついてから最終的な解答方針まで見えてくることはほとんどないと思います。難しい問題はイメージとしては壁が2〜3段階あるという感じです。最初の足がかりとなる解き方をして出てきた式が解けない。そして再び考える。それに対して解き方を考えまたやる。問題を解く時はこれの繰り返しになってきます。 難しめの問題のイメージを話したので、次は勉強方法について書いていきたいと思います。数学は多くの問題集に手を出すより、一冊完璧に、とよく言いますが、その通りだと思います。なぜなら、結局一冊の中に大方必要になってくる解法は全て入っているからです。そして例えばプラチカであればその単元ごとにまとめて学習していくことをお勧めします。その時に確率であれば、P型、C型、漸化式型、円や数珠順列、条件付き確率、じゃんけんや、勝敗を決めるパターン、etcがあると思うので、そのパターンを「漏れなく、だぶりなく」身に付けるとともに、どのパターンの問題はどうゆうような問題文になっているのかを自分なりに考察することが大切です。例えば、簡単な例ですが、組み合わせの時に同じようなものを区別するかしないかで解き方が変わると思います。このように問題文や式を観察して、どのときにどのパターンを使うことが多いか分類すると良いでしょう。このとき、「漏れ」がないことで、どれかのパターンに帰着し、「だぶり」がないことで、実は同じ解法なのに出題形式が違うから両方覚えてしまって、どっち使うか迷うような手間が省けます。そこを意識して勉強するのがいいと思います。 最後に過去問についてですが、過去問はあくまで出題形式、傾向や、時間などを確認して実践するものだと思っています。なので直近6年のものは残しておくべきでしょう。またマスターって言葉の定義は曖昧です。マスターが過去問の解き方を覚えるだけであるなら無駄だと思います。問題を見て、なんでこの解法をしたのか考え、そして始めてその問題を見たと仮定したとき、その問題文からどんなキーワードを拾ったら、自分がその解法にたどり着くかというところまで考え、身に付けることができて、始めてマスターしたと言えます。それなら過去問のマスターはかなり有用だと思います。数学は初見で考え、解いて、解答をみて、終わる人が多く、初見で考えることが重要だと思われがちですが、それを可能にするには解答をみた後の上記の考察がもっとも重要になると思います。 試験本番までまだあと4ヶ月あります。十分に身に付けるだけの時間はあると思うので最後まで頑張ってください。応援しています。
京都大学経済学部 フランダー
29
2
文系数学
文系数学カテゴリの画像
数学のできる人
初見の問題が解けるようになる数学の勉強法について話しますね。 まず、初見の問題は大きく分けて2つあります。 ① 基本問題だが自分にとっては初見 ② 応用問題で多くの人にとって初見 まず、①について 基本問題の演習を繰り返し、基礎固めをしてください。 具体的な方法は下に書いておきますね。 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、『オススメ教材』ですが 全範囲を満遍なくカバーし、数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 なおかつ、問題を解くときの考え方まで紹介しているので、基礎固めはこの教材を何周もすれば十分です! 基礎がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! この演習用として ・1対1対応の数学 ・プラチカ ・やさしい理系数学 などがオススメです! 次に『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください!
慶應義塾大学理工学部 チェンパン
77
7
理系数学
理系数学カテゴリの画像
東大入試 次元が違う
質問者様が文系ということですが、私が理系なので数学のお話をさせてもらいますね。 普段、練習問題などを解く時に、「この問題はこう変形したらうまくいくなあ〜」となんとなくで終わらせていませんか? もちろん形式的な(公式などの)理解も必要ですが、なんとなくの理解で東大数学を突破するのは難しいでしょう。 特に数学において、本質を見極めるためには「同じような問題をいくつも解いてみる」ということが大切です。 問題集によっては1パターンにつき多くて2、3つくらいしか問題が用意されていなかったりします。それでは本質が見えてきません。パターンを覚えて理解した気になって終わりです。 苦手な分野に絞ってもいいので、類題をいくつも解いてみてください。その際、東大の過去問(確か分野別に纏まっているものがありましたよね)や、東大オープンの過去問(駿台の数学は癖があるので、最初に手を出すなら河合塾が良いでしょう。私は駿台には手が回りませんでした笑)などがおすすめです。 いくつも類題を解いていると、似たような問題でも違う点、違うような問題でも類似した点、などが見つかると思います。気づいたことはメモをして残しておきましょう。言葉にして残すことで頭が整理されますし、注意をしながら解くことができます。 日々少しずつで良いので、このような丁寧な学習を続けていけば、段々と頭がクリアになってきて、問題がよく見抜けるようになるはずです。 追伸ですが、東大の問題は難しい!と思って解くと、比較的単純な問題すら解けなくなるという現象が起こります。「東大とはいえ、簡単な問題もあるやろ!」くらいの気持ちで向き合うのがおすすめです笑 どちらにせよ、東大を意識した問題演習を詰んでいけばそのうち慣れて、難しい問題、簡単な問題の見分けもつくようになりますよ! 応援しています!
東京大学理科一類 ふね
16
3
過去問
過去問カテゴリの画像
数学の点の取り方
数学の苦手な人の為に 数学の克服法について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、 半分間違っている認識だと思います。 実は数学はある程度、 暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、その問題の類題は解けないということです。 なので、これらの典型的な基本問題は 覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! どうしてこう考えるのか? どうしてこの式変形をするのか? といった考え方を暗記するということです。 一般的にこれらの典型的な基本問題を組み合わせたものが応用問題とされます。 つまり、難しく見える応用問題をいかにして自分の知っている基本問題の形にするかが差がつくポイントになります。 したがって、数学が苦手だと思う方はまず典型的な基本問題をある程度暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください! これをやるだけで数学はぐっと偏差値が上がります! ぜひやって見てください! 忘れた時に見返してくれたら幸いです!
慶應義塾大学理工学部 チェンパン
35
2
理系数学
理系数学カテゴリの画像
初見の問題が解けない
初見の問題が解けるようになるための 数学の参考書と勉強法について紹介します! まず、初見の問題について これを2つに分類します。 ① 基本問題だが自分にとっては初見の問題 ② 応用問題で多くの人にとって初見の問題 まず、①について 基本問題の演習を繰り返し、 基礎固めをしてください。 具体的な方法は下に書いておきます! 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、①の基本問題に関する『オススメ教材』ですが 全範囲を満遍なくカバーし、 数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 問題を解くときの考え方まで紹介しているので、 基礎固めはこの教材を何周もすれば十分です! 基礎問題がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 加えて、青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! 次に②の応用問題を解く力を身につける 演習用のオススメ教材としては以下の教材がオススメです! ・1対1対応の数学 ・プラチカ ・やさしい理系数学 最後にに『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください! やり方を忘れた時に見返してくれたら幸いです。
慶應義塾大学理工学部 チェンパン
64
4
文系数学
文系数学カテゴリの画像
数学について
まず問題集に載っている標問(チャートで言えば例題ですね)を何も見ずに全て解けるか試してみてください。 ここで解けない問題が2割くらいある場合はまだ基礎が定着していないと思って大丈夫です。解けなかった問題の解き直しから始めましょう。 次に、もし上のチェックをした上で「ほとんど正解できている」という場合についてです。 数学の応用問題は上記の標問の考え方を4,5個組み合わせて作っていることがほとんどです。 つまり、基礎は固まっているが応用ができないという場合は「どの基礎事項を使うべきか見抜くことに慣れていない」ことが課題になると言えます。 その場合、以下の手順で解けなかった問題のやり直しをしてみてください。 1回目: どの基礎事項を使っているのか確認しながら問題を見直す 2回目: 答えを見ながらで構わないので、一回自分で最後まで答えを完成させる 3回目: 何も見ないで最後まで答えに行き着けるか確認する。解けなければ2回目の手順を再度行う。 数学は同じ問題を繰り返し解いて考え方を定着させることが意味を持つ教科です。 問題数をこなすだけでなく、一つの問題を突き詰めて解き考え方を理解してみましょう。
早稲田大学先進理工学部電気情報生命工学科 dice95
38
3
文系数学
文系数学カテゴリの画像
難問との向き合い方
その感じよくわかります。 私の経験からお伝えするならば、あなたがお考えのようにたくさん問題を解くことと、さらに付け足すならば、制限時間を決めて難問と向き合うことが打開のカギになります。 1つ目のたくさん問題を解くことには大きく3つの目的があります。 ①典型問題の典型的な解法を身につけること。 ②問題の捉え方の視野を広げること。 ③計算ミスや勘違いを防ぐ注意力を高めること。 ①においては、いわゆる標準レベルの問題に相当しまして、問題集などでは例題として取り上げられていることが多いです。この手の問題は考え方を理解した上で動きをパターン化させてしまうのもアリだと思います。 ②については発想力です。よく問題を解いていて「こういう風に考えれば良かったのか」とか「着目する場所が違った」と思った経験はございませんか?いわゆるこの発想力を高めるには演習の経験値を積んで、問題の見方や捉え方を知っていくしかないと思います。 ③はおそらく最後まで悩むものです。このようなミスで本番減点されないためにも演習量は確保しなければなりません。 無意識的にこの目的が達成されますので、ひたすら問題を解く効果は実感しにくいですが、大変重要なものです。 2つ目のきちんと難問と向き合うことについては、上述した②に近いものがあります。つまり、難問は一見問題文を読んだだけでは解法が見えてきません。 それを打破するには、とにかく問題文から分かることを書き出してみる、その書き出されたものから他に分かること、ヒントはないかと悩み、少しずつ紡いでいくことで解法が見えてくることが多いです。 長い時間粘っていても効率が悪いですので、きちんと時間を決めて、その間はひたすらあれこれ考えて解法の糸口を見つける経験を日頃から積んでいると、自力で解ける問題が増えてくると思います! おそらく入試本番でも悩むような難問は出てきます。 そこで自力で解法を見出せるかどうかは、やはりたくさん問題を解く経験値と日頃から難問と向き合ってきたかの2つがキーになると思います!
東北大学教育学部 まー
11
1
文系数学
文系数学カテゴリの画像
発想力をつけるとは(整数他難問)
やはり多くの問題に触れることが1番だと思います。特にあまりできない感触のある分野が分かっているのであれば、それを重点的にしてみてはどうでしょうか?(整数分野ならマスターオブ整数などがあります) 付け加えると、問題の誘導に上手に乗ることも問題を解く上ではとても大事です。その小問は何のためにあるのか、など考えながら解いてみてください。 さらに整数分野に限っていうなら、適当な数字を当てはめて実験してみるというのもかなり大事で、そこから規則性を見出すことができることもあります。 さらに、時間に余裕があれば1つの問題に対する複数の解法を考えてみたり、なかなか解けない問題でも何日もかけて考え続ける、というのもおすすめです。 また、過去問をたくさん解いていけば、どういう考え方が求められているかもわかると思いますので、ぜひ試してください。
京都大学医学部 Yu
3
2
理系数学
理系数学カテゴリの画像
文系数学の勉強法について
慶應経済のものです。 自分も数学受験ですのでお答えさせていただきますね。 さていきなりですが、問題を解くときどのように解いていますか?もし、解く→答えを見る→採点する。これだけで終わっているなら伸びるわけがありません。『高校数学は暗記だ』などと言ってる人をたまに見かけますが、基本的に数学は理論です。解くだけではなく理解して初めて身につく力となる学問です。ですから解いて答えを見て採点した後に、じっくりと解説を読んでください。そしてじっくりと読んだ後、解説を見ずにもう一度問題を解いて、解説の解き方を再現できるようにしてください。この一手間を加えるだけでかなり理解度が変わってきます。 そんなのもうやってる!って場合は、焦らないでください。もしこのやり方がきちんと出来ているならば身につかないはずがありません。それはただ問題の練習量がちょっと足りないだけです。でも今の時期からやれば必ず間に合います。だからこそ焦らないでください。精神的な話になってしまいますが、自分はできる、と思い続けることはかなり重要です。もしすぐに点が伸びなくて悩んでしまっても、『きちんとしたやり方でやってるから大丈夫。もう少し頑張れば必ず点は伸びる』と自分を信じてください。焦りや不安は自己嫌悪につながり大変よろしくないです。是非自分を信じてあげてください。 最後に具体的なことになりますが、夏休みには一度自分の志望校の過去問を見ておくといいと思います。自分と志望校の距離が掴めますし、練習とは違った生の問題、本当の試験としての問題を見ておくことは今後の勉強のモチベーションに関しても学力向上に関しても重要です。また、志望校が早慶であるならば、日東駒専あたりの同じ学部、あるいは問題の出題範囲が似ている大学の過去問を解いて行くといいです。難易度が下がりますので志望校よりも簡単に解けるはずです。是非とも頑張ってください。 心から応援しています
慶應義塾大学経済学部 83pico83
18
2
文系数学
文系数学カテゴリの画像
国立2次試験に向けた数学(文系)の勉強方法について
こんにちは!RIZと申します。 今回は夏休みに一番時間をかけた数学で点数が取れなくて悔しいとは思いますが、間違えた問題についてはしっかり復習して、もし本番で出題された時に間違わないきっかけになったと前向きに捉えましょう!あくまで模試は練習ですからね。 さて、数学の学習方法についてですが、まず数学は3つ大事な要素があります。1つ目が計算能力です。これは言わずもがなですね。2つ目が解法パターンを覚えていることです。典型的な問題の解き方を知っているということですね。最後3つ目が思考法です。これはある問題に対する解法を考えるときの過程ですね。「なぜ」その解法で解くのかということです。 以上を踏まえて、今回の模試では何が不足していたから出来なかったのか考えましょう。例えば時間が足りなかったとすれば、計算が遅かったのか、解法を思いつくまでに時間がかかったのかなどが挙げられますし、単純に解き方がわからなかったとしたら、その時答えを見て理解できた場合は3つ目の思考法が足りなかったと考えられますし、もし答えを見ても理解できない場合は2つ目の解法パターンの把握がそもそもできていないことが考えられます。ここで不足点を洗い出して今後の学習の糧にしましょう。 以下では、上記の3つの要素のうち、特に意識しないと習得できないであろう3つ目の思考法にフォーカスしてお話しさせて頂きます。夏休みの学習で多くの時間を割いたということは、恐らく2つ目の基本的な問題の解法は頭に入っている状態だったけれども、模試などの初見の問題になると解けなくなるという状態ではないでしょうか。(もし違ったら申し訳ないですが、今回はその状態を前提にします。違う場合はコメント欄で教えてください。)この時今までの学習で見直してほしいのは、ある問題に対して、「なぜ」その解法で解くのかしっかり理解していたかということです。例えば「自然数に関してある命題を示せ」といった問題があった時にその問題が解けなかったとします。そこで解答を見ると、数学的帰納法で解いていたとします。こうなった時に、単純に解答で数学的帰納法が用いられていたから、こういう問題は数学的帰納法で解けばいいのかと理解するだけではいけません。なぜ数学的帰納法で解くのかを考える必要があります。それは今回の場合、自然数という条件かつ証明問題であることから、ひとまず数学的帰納法を疑ってみるという思考法が存在するからです。他にも図形問題が出てきたら、①幾何的(図形の性質)に解くのか、②座標に置いて解くのか、③ベクトルで解くのか、などを考えたり、といった思考法も存在します。これらの例はとても単純ですが、意外とこの「なぜ」といったところまで考えていない人が多いです。この場合、単純に解法を暗記しているだけなので、すでに解いた問題は解けるものの、類題になると手も足も出ないという状態にも陥りかねません。数学はこのように、ある具体的な事例から、抽象的な「思考法」を考えることがとても重要です。この思考法は一般的に使えるので、初見の問題でも条件から適切な解法を選択することができるようになります。なのでもし今回の模試が出来なかった理由が、この「思考法」という要素が欠けていたからであれば、今まで使っていたテキストなどを見直して、「なぜ」その解法で解いているのか説明できるようにしてみると良いと思います。 最後になりますが、阪大の文系数学は基礎的なレベルの問題が多いです。今からでも十分間に合います。まずは焦らずに自分が間違えた理由を分析して、特に「なぜ」を考えて勉強してみてください。ご質問等ありましたらコメント欄でお願いします!
大阪大学経済学部 RIZ
5
1
文系数学
文系数学カテゴリの画像