UniLink WebToAppバナー画像

例題が解けても演習が解けない

クリップ(33) コメント(1)
8/26 10:45
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

りんりん

高卒 三重県 三重大学医学部(58)志望

青チャートや基礎問題精講などで例題は解けてもその下にある演習問題が解けないです。 多分きちんと理解できていないのと、問題の解法暗記ができていない、少しひねりが入ると太刀打ちできなくなるの3点が問題だと考えているのですが、思うのですが、どうしたらいいのでしょうか。 何か良い方法やもし同じ経験をした方がいらっしゃいましたら解決策を教えていただきたいです。

回答

回答者のプロフィール画像

rockyyy

大阪大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
rockyyyと申します。 まず、気をつけていただきたいことが、数学は解法暗記で解けるものではないと言うことです。解法暗記の勉強法であれば、問題が少しでも変わってしまえば、何もわからないと言った状況になってしまいます。それでは数学の点数は伸びません。 ではどうするのかというと、数学を勉強することで学んで欲しいことは、自分が正解を導き出すためのプロセスを学んで欲しいと思っています。「これは解法暗記と同じでは」と思われるかもしれませんが、それは違います。例題の解き方を一言一句違わず覚えたって、違う問題では何をするべきかわからなくなってしまうだけです。プロセスを学ぶとは、正解を導き出すための過程において「これを使えば、これを求める事ができる」「このように式変形することで、このようにまとめる事ができる」と言う知識を増やすと言うことです。僕はよく解法の引き出しを増やすと言う言葉を使っています。数学は別に正解が論理的に求められていれば、解法はなんでもいいと言う学問です。絶対にこの解き方ではないとダメだと言うことはありません。なので、自分で解法の引き出しを増やしておいて、問題を解く際に、色々な手段を取れるようにしておくことが数学を解けるようになる近道ではないかと考えています。数学が得意な人はみんなそうしていると思います。その思考プロセスは
「この定理を使えば解けるんじゃないか」「いやダメだなできない」 「じゃあ、これは?こうすれば解けるんじゃないか」「いや、これが邪魔だからできない」 「あ、一旦この形にすればできるんじゃないか」「こうすると式が簡単になって、解けそうだぞ!」と言うことを頭の中で大体考えてから解答を書き出すものだと思います。 つまり、数学において重要なことは「1つの問題に対して、論理的なアプローチ方法をたくさん持っていること」だと僕は思います。 じゃあ具体的にどんな勉強すればいいんだと思うと思います。それは解法を丸暗記するのではなく、「解答ではなぜこのようなことをしているのか」「これを使うことで、何がいいのか。他の方法ではダメなのか」「自分が解いた方法ではなぜダメなのか」と言うことを考えて、理解する事が重要です。問題を解いて、解答をみる。そして間違っていたら、なぜ間違っているのか、なぜ解答ではこうしているのかと言うことを考えて、その理由がわかった時はそれをノートに書き残しておき、日常的に見返す。この習慣をつけると、日に日に引き出しが増えて、数学が解けるようになってくると思います。僕はそれで数学が得意になりました。 アドバイスとしては以上になります。拙い文章失礼しました。ただ1つだけ知っていて欲しいことが、数学は解法を丸暗記していくだけでは絶対に点数が上がらないと言うことです。なぜこのやり方で解答は解いているのかと言うことを深く考えて、自分のものにしていく必要があります。最初は慣れなくて苦労してしまうかもしれませんが、周りの人や先生に教えてもらいながら継続すると必ず点数は伸びると思います!よかったら参考にしてください!
回答者のプロフィール画像

rockyyy

大阪大学工学部

16
ファン
9.5
平均クリップ
4.7
平均評価

プロフィール

2次受験科目 数学 物理 化学 英語 共通テスト 理系科目 国語 日本史 進研模試、駿台模試、河合模試、全て受験経験あり 部活経験、大学体育会経験あり 京都大学大学院工学研究科 合格 大阪大学大学院工学研究科 合格 理系科目は得意です!よろしくお願いします! メッセでもオンラインでも気軽にどうぞ!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

りんりんのプロフィール画像
りんりん
8/26 14:15
回答ありがとうございます。 とてもわかりやすかったです 引き出しを増やせるように今日から考え方を変えてみます!

よく一緒に読まれている人気の回答

数学の解き方
初めまして。rockyyyと申します。 数学についての勉強法についてお答えします。 結論から言うと、YNUさんの勉強法は間違ってはいません。何度も解き直して、解法を落とし込むという方法はとても重要です。しかし、時間がかかりすぎてしまうため、時間が惜しい受験期間においてはあまり望ましくないのかなと思いました。 僕は、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今から頑張っても全然遅くはありません。よければ僕の勉強法も参考にしてもらって頑張って欲しいです!応援していますよ!
大阪大学工学部 rockyyy
8
2
文系数学
文系数学カテゴリの画像
解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
64
6
文系数学
文系数学カテゴリの画像
解法を身につけるには
なぜかの解法が思いつくのかということですよね。 いくつか方法を挙げるので、良いのがあれば実践してみて下さい。 ①誰かになぜこの解法になるのか質問 ②誰かに解かせてみて、思考の過程を盗む ③分からない問題に印だけつけて、他の問題集にいく。 特に問題集は思考の過程が詳しく載っているものがいいと思います。実際に本屋さんで見比べてみるといいけど、「入試問題の核心」とかオススメかな。時間が解決するとはよく言ったもので、戻ってきたらある程度理解しやすくなってるもんよ。 まぁ、数学の解法がパッと出てくるのはめっちゃ大事だけどあくまで武器を揃えてるだけ。ある程度武器揃えたら初見問題を解いて、実際に使ってみないと身になりませんよ。スポーツも練習ばっかじゃダメ、試合をしてみないと見えてこない世界がある。勉強も同じですよ! 数学のセンスがないと自覚があるなら、数学は暗記という言葉をあまり真に受け過ぎないように…
大阪大学工学部 atom
16
2
文系数学
文系数学カテゴリの画像
数学の分からない問題の勉強方法
ほさかさんの質問に答える前に、少し遠回りをさせてください!! 私は数学の実力をつけるために ①解法暗記 ②複数の解法を組み合わせる、複数の解法から一つに絞る力をつける(数学的思考力をつける) ことが大切だと考えています。 ①では「すぐ答えを見ること」は正しいですが、②では逆に長考することが推奨されます。 手も足も出ない問題とは方針がまるっきり立たない問題だと推測します。 方針が立たない場合、そもそも解法を知らないパターンと、どの解法が使えるのかわからないパターンがあります。前者は①に、後者は②に対応します。 ① 解法暗記をすべき問題は青チャートの例題が特にそうですし、京大でもそうカテゴライズされるべき問題はあります。(京大理系2022大問3のユークリッドの互除法など) 例えば青チャートを終えたとしても、発展問題の演習の中で出てきた新しい解法を知識として蓄えることは重要なんです。 それと一応説明すると、解法暗記とはある問題のパターンに対してどのような解法が合致するのか覚えるということです。数学の性質を根拠に基づいて解法を覚えるべきことです。(部分的には高度な内容もあるで、初学〜中級者の方はパスしても構わない場合もあると思います) ② 目新しい条件が設定されていたりして、どんな解法が使えるかすらわからない時や、一見典型問題に見えていつも通りな解法が通じない時があります。そのような問題に対処するためにはとにかく時間をかけていろいろ試す他ありません。値を代入したり、より簡単な条件で考えてみるなどの実験から着想を得て既知の解法に帰着することや、別の分野から問題を考えてみる(たとえば、微積の問題だけど、ベクトル、三角関数、図形の性質の分野の解法を使う)ことなど色々試すパターンがあります。どんなパターンがあるかを多くの問題を解く中で経験していくことが重要です。 (=数学的思考力をつける、という意味で私は使います) ここからほさかさんの質問に答えます! ①解法暗記②数学的思考力をつける、の両方の面で多くの問題を解くことが一番大切になります。知識を網羅してさらに定着させるためです。 青チャートなどの網羅系参考書では回転率を上げてまさしく解法を網羅するのが良いと思います。多くの問題を解くことが一番の目標です(理解が二の次でいいということではありません)。この段階では、解法を知らないのだから、わからない問題は答えをすぐにみるべきです。 プラチカなどの演習問題の載っている参考書でも、多くの問題を解くことが目標となります。演習問題を解く理由は二つあり、一つは解法暗記の知識を定着させること、わからない問題に対し試すことのパターンを知ること、またそれを定着させることです。手も足も出ない問題に対処するパターンを知らない段階では手も足も出ない問題の答えはすぐ見るべきです。演習を繰り返すうちにいずれ手と足が出るようになります。そのときからいろいろ試すと解ける可能性が出てくるため、時間をかけて演習する価値が出ます。 ⒈網羅系参考書では答えをすぐに見て良い。 ⒉演習不足の段階では手も足も出ない問題の答えはすぐに見て良い。 ⒊演習して手と足が出てきたら難しい問題も時間をかけると良い。 受験を通して思った個人的な思想なので参考までにしてください!
名古屋大学経済学部 Na
14
7
理系数学
理系数学カテゴリの画像
理系数学の勉強法
こんにちは。rockyyyと申します。 数学の勉強法について僕が思うことをこれから紹介するので、よかったら参考にしてください! まず、数学の勉強をしていて、わからない問題が出てくると思います。その時、「あーわからないから、すぐ答え見た方が効率いいし、そうしよ」と思ってはいけないと個人的には思います。なぜかというとそれでは「自分の持っている知識で、問題を解く」という練習ができないからです。試験というのは、自分が勉強で解いた事がある問題と全く同じ問題が出るわけではありません。なので、数学を得意になるには「未知の問題に対しても、自分が培ってきた知識を使って解けるようになる」という能力が必要です。それは、自分で考えて問題を解こうとする姿勢がないと身につかないと個人的には思います。なので、数学の問題を解いているときに、わからなかったらすぐ答えを見るのではなく、最低でも10分くらいは自分の今持っている知識を使って試行錯誤することが大事ではないかなと思います。 ただ、注意して欲しいのは、別に解説を読むことは全然間違っていません。自分が自分なりにその問題に対してやれることはやってから、解説を読むようにしましょう。そうすると、解説の内容やその意味合いについての理解も深まると思います。「あ、自分はこうやったけど、解説のようにやるともっと効率がいいな」とか「自分がやった方法は、こう言った理由で間違っていたのか」という事がわかりやすくなります。そのためにも一回自分がわからない問題も自分なりに試行錯誤する事が大事だと思います。 また、自分が解説を読んだ後に新しく知ったことや、なるほど!と思ったことは必ず自分の言葉で書き残しておくようにしましょう。これはとても大事です。 以上のことを考えて、数学の勉強法を変えてみてください!きっと成績は伸びると思います。 次に、これからの数学の勉強スケジュールについてですが、僕は全部の分野をやる必要はないと思います。模試の結果からわかっている自分の苦手分野を重点的にやると良いと思います。もし自分の苦手分野があまりわからなかったら、数学の問題集の基礎問題を解いてみましょう。その分野のすべての問題をやる必要はないです。基礎問題があまりにも解けなかったら、その分野についての理解が足りていないということなので、そこはまた重点的に勉強すれば良いと思います。 以上になります。最後にもう1つお伝えしたいことが、数学は暗記科目ではないということです。解法を丸暗記しても問題が解けるようにはなりません。解説を読んで、「なぜそうなるのか」「なぜこのような解き方をしているのか」「なぜ自分の解き方ではダメなのか」ということを学ぶ事が大切です。数学が苦手な人は大抵が丸暗記をしようとしている人なので、一応お伝えしておきました。勉強法を変えれば、しっかり知識も定着して、数学が解けるようになると思います!受験応援しています!
大阪大学工学部 rockyyy
9
2
理系数学
理系数学カテゴリの画像
数学が壊滅的
ご相談くださりありがとうございます 端的に答えるならば、数学を伸ばすには沢山問題を解くしかありません。ただ、その解き方には少し注意が必要です。 よく、数学ができることはセンスだなんだと言うことがあると思いますが、それは基本的に間違っています。数学は、ある程度のレベルまではほぼ暗記のようなものと言っても差し支えないほど経験が重要になってくる教科だと私は考えています。 数学の問題を解く時に最も重要なことは、いかに自分がといたことのある問題に帰着させるか、ということだとよく言われます。複雑そうな問題でも、自分のやったことのある解放に落とし込めれば勝機が得られます。そのため、どんな難関大の問題であっても、まず"これはどの分野についての問題なのか(二次関数?複素数平面?)"、分野の見当がつけば、"分野の中のどの話題についての問題なのか"、などをまず整理することがポイントとしてよく提示されます。私の周りにも数学が飛び抜けてできる人はいましたが、どうして解法がわかったの?と聞くと、やったことあるから〜という返事が返ってきたことは少なくありません。 このように、数学の問題を解く上ではこれまで解いてきた問題をしっかり自分の血肉として定着させ活用していけるかが重要になってくるわけなので、より多くの血肉を獲得しておくことは、数学の実力を伸ばす上で非常に重要で、最も効率的な方法といえます。そこで、より多くの問題を解いておくことが必要となってきます。 ここでポイントとなるのが、問題演習の方法です。闇雲に問題をダラダラ解いていたのでは、せっかく時間をかけて頑張ってもあまり頭に残っていない、あんなにやったのに全然伸びない、と言った状況に陥ってしまう可能性が非常に高いです。肝心なのは、解いた問題をあなたの血肉とすること。つまり、問題の復習こそが大切なプロセスとなります。 ここまで問題演習の重要性を述べてきたので、具体的な方法の話に移りたいと思います。 演習のポイントは3つ ①時間を測る ②解けたかどうかなどをメモする ③復習、再度解く ①演習の際は時間を測りましょう。これは問題によって何分になるかが変わってくるので一概には言えませんが、教科書の例題レベルであれば5〜10分ほどという感覚でしょうか。ただ重要なのは時間を厳守することで、タイマーが鳴ったら解き終わってなくても手を止めましょう。 ②積極的に参考書にメモをしましょう。解き方のメモではなく、時間内に解くことができたか、正解することができたか、解き方は合っていたか、などをメモしましょう。特に答えが間違っていたもの、解き終わらなかったものは痕跡を残しておきましょう。 ③復習の際は充分時間をかけましょう。多くの問題を解く方に意識が向きがちですが、急がば回れ、じっくり解法を理解して頭に入れることを優先しましょう。そして、少し経ったころにできなかった問題を解き直しましょう。そこで解けていたら、しっかり定着させることができているということです。 長くなりましたが、数学は努力で十二分に伸ばすことができる教科です。ぜひ演習を積み重ねて数学力を伸ばしていってください。応援しています!
東京工業大学工学院 クロキ
3
2
理系数学
理系数学カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像
青チャート何周もしたのに解法を忘れるのはなぜか?
つるまるさん、こんにちは〜☺️ 確かに、やってもやっても身につかないことってありますよね。私も、模試などの時に、「これ絶対やった問題なのに〜。なんで分からないんだー。」と自分を殴りたくなる経験を何度もしてきました。そんな私が悩んだ末に編み出した。解法暗記方法をお教えしたいと思います。 ✅行き当たりばったりの解答を止める 解答を作成するときに、最後まで解答が思い浮かんでいないうちに書き進めてしまっていませんか? もちろん、模試の時や入試本番でどうしても点数が取りたい時にはとりあえず書き進めるという方法を取ることも全然アリです。 しかし、練習の時はそれではいけません。特に解法を定着させたい時には、方針を立ててから解くようにしましょう。 ではなぜこのようにするといいのでしょうか。 行き当たりばったりで解くと、自分がなぜその思考に至ったのか分からなくなってしまいます。自分の思考の理由がわかると足がかりが増えます。 ✅多くの解答に共通する考え方を探す 数学には多くの問題に使える考え方がたくさんあります。 たとえば… 2変数だったら一文字固定しよう 整数問題は因数分解、剰余類に分ける、範囲を絞る ベクトルは基本ベクトルだけで表す 軌跡は軌跡上の点を(x,y)で置く など最初の一手が決まっている問題は多いです。 このような共通する考え方をたくさん知っていると解法に辿り着きやすくなります。 ✅最後から考えよう これは方針を考えるコツです。 最終的に何をしたいのかを確認しましょう。特に指数対数の範囲では式の変形に注目しすぎて最終的に何をしたいのか分からなくなりがちです。 ですから、最後から逆算してゴールから考えてみるというのも解法にたどり着くための鍵になると思います。 ✅大量の問題を解こう やはり、これが単純かつ確実かつ最強です。大量の問題を解くことによって、解答の中の当たり前の部分が増えます。すると、一瞬で頭の中で解答の最後の方まで辿り着けます。 さらには初見の問題を見ても頭の中で類似問題を検索して知っている問題として解く事ができ流ようになります。 どうでしたか?文系の方にとっては数学は難敵ですよね。数学の問題を解く1番のコツは必ず解けると思うこと。解けないかもしれないと思いながらだと解けません。自信が実力を上げ、実力が自信を上げるのです。
東京大学理科一類 しゅうへい
18
5
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
236
33
理系数学
理系数学カテゴリの画像
進研模試高3記述模試で4割から脱却する方法
慶應義塾大学の理工学部に通っている1年生のものです。数学はもともと苦手でしたが、試行錯誤の末、当時からでは考えられないくらい伸ばしたので、その経験を踏まえた上で回答しようと思います! まず、数学はどういう学問かを今一度正しく考え直しましょう。 数学は"思考力と処理能力"を同時に試させる学問です。そのため近年よく謳われるような"数学は解法の暗記"とは本来対局の位置にあるものです。 では、なぜこんなことが世に広まっているのでしょうか? それは覚えてしまうこと自体は数学を解くことにおいて大事な一要素であるからです。 どっち??と思われるので詳しく解説します。 例えば、青チャートの解法をすべて暗記しても難関大学では通用しません。それは初めから歴史なので単語や人物名のようにただ覚えようとしてしまうからです。 受験は1つのテーマに対してもさまざまな角度から問いを作れますし、作っています。 網羅系参考書をただこなすだけでは1つの問題を一方方向からしかみる力を養えません。 そのため、必要なことは多角的に問題を見る力、すなわち本質を理解することがまず第一の課題です。 具体的に言えば、解の配置問題がわかりやすい例だと思います。 解の配置問題はいろんな解き方がありますが、全てやっていることは条件を満たす時に解が存在するかを考えているに過ぎません。 本質的に理解するとは一見違ったような解き方も「結局OOを満たすための条件を違った表し方にしているだけなんだな」と思うことだと思います。 そして解法を覚えてしまうのはこの次の段階です。本質を理解した後に必要になるのはスピードです。スピード上げるためには本質を理解した解き方を瞬時に出す必要があります。そのための解法暗記です。 言われずにも,意識せずにもできている人が 「数学は暗記」と言っていることに惑わされないでください。 以上を読んだ上で自身の数学の勉強法、解き方、向き合い方を振り返ってみてください。 きっと何かを間違えていたり、勘違いしていたりしたところがあると思います。 数学は水をあげ続けても実が出るまで時間もかかれば、実る実感も薄い教科です。 自分が正しいと思った勉強法を一度決めたならば、それを踏ん張って続けることがとても大切です! 合格を心から願っています😁 頑張って👍
慶應義塾大学理工学部 雲幸三郎
0
0
文系数学
文系数学カテゴリの画像