例題が解けても演習が解けない
クリップ(32) コメント(1)
8/26 19:45
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
りんりん
高卒 三重県 三重大学医学部(58)志望
青チャートや基礎問題精講などで例題は解けてもその下にある演習問題が解けないです。
多分きちんと理解できていないのと、問題の解法暗記ができていない、少しひねりが入ると太刀打ちできなくなるの3点が問題だと考えているのですが、思うのですが、どうしたらいいのでしょうか。
何か良い方法やもし同じ経験をした方がいらっしゃいましたら解決策を教えていただきたいです。
回答
rockyyy
大阪大学工学部
すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
rockyyyと申します。
まず、気をつけていただきたいことが、数学は解法暗記で解けるものではないと言うことです。解法暗記の勉強法であれば、問題が少しでも変わってしまえば、何もわからないと言った状況になってしまいます。それでは数学の点数は伸びません。
ではどうするのかというと、数学を勉強することで学んで欲しいことは、自分が正解を導き出すためのプロセスを学んで欲しいと思っています。「これは解法暗記と同じでは」と思われるかもしれませんが、それは違います。例題の解き方を一言一句違わず覚えたって、違う問題では何をするべきかわからなくなってしまうだけです。プロセスを学ぶとは、正解を導き出すための過程において「これを使えば、これを求める事ができる」「このように式変形することで、このようにまとめる事ができる」と言う知識を増やすと言うことです。僕はよく解法の引き出しを増やすと言う言葉を使っています。数学は別に正解が論理的に求められていれば、解法はなんでもいいと言う学問です。絶対にこの解き方ではないとダメだと言うことはありません。なので、自分で解法の引き出しを増やしておいて、問題を解く際に、色々な手段を取れるようにしておくことが数学を解けるようになる近道ではないかと考えています。数学が得意な人はみんなそうしていると思います。その思考プロセスは
「この定理を使えば解けるんじゃないか」「いやダメだなできない」
「じゃあ、これは?こうすれば解けるんじゃないか」「いや、これが邪魔だからできない」
「あ、一旦この形にすればできるんじゃないか」「こうすると式が簡単になって、解けそうだぞ!」と言うことを頭の中で大体考えてから解答を書き出すものだと思います。
つまり、数学において重要なことは「1つの問題に対して、論理的なアプローチ方法をたくさん持っていること」だと僕は思います。
じゃあ具体的にどんな勉強すればいいんだと思うと思います。それは解法を丸暗記するのではなく、「解答ではなぜこのようなことをしているのか」「これを使うことで、何がいいのか。他の方法ではダメなのか」「自分が解いた方法ではなぜダメなのか」と言うことを考えて、理解する事が重要です。問題を解いて、解答をみる。そして間違っていたら、なぜ間違っているのか、なぜ解答ではこうしているのかと言うことを考えて、その理由がわかった時はそれをノートに書き残しておき、日常的に見返す。この習慣をつけると、日に日に引き出しが増えて、数学が解けるようになってくると思います。僕はそれで数学が得意になりました。
アドバイスとしては以上になります。拙い文章失礼しました。ただ1つだけ知っていて欲しいことが、数学は解法を丸暗記していくだけでは絶対に点数が上がらないと言うことです。なぜこのやり方で解答は解いているのかと言うことを深く考えて、自分のものにしていく必要があります。最初は慣れなくて苦労してしまうかもしれませんが、周りの人や先生に教えてもらいながら継続すると必ず点数は伸びると思います!よかったら参考にしてください!
コメント(1)
りんりん
8/26 23:15
回答ありがとうございます。
とてもわかりやすかったです
引き出しを増やせるように今日から考え方を変えてみます!