UniLink WebToAppバナー画像

冬休みの数学強化

クリップ(6) コメント(2)
12/10 14:36
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

あーちゃん

高1 東京都 千葉大学薬学部(63)志望

数学が大の苦手だけど理系志望の高一女子です。 偏差値60くらいの公立中高一貫校に通っており、数学は一応常に1番上のクラスですが理系の頭ではなくいつも足を引っ張っています。このままだと理系を諦めてしまうのではないかと思うくらい落ち込んでる状態です、、。 冬休み中に数学力を固めるためには、どのようなことをすれば良いでしょうか?今は、学校で配られた4STEPのみやっており、今は数2の指数関数と三角関数の終わりの方を習っている感じです。 おすすめのテキストや、予習をすべきなのか復習なのか、どのようにしたら差をつけられるのか教えていただきたいです!!

回答

回答者のプロフィール画像

yuya

東京工業大学物質理工学院

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
理系の頭では無いっていうのはどのような時に感じるのかな? 数学の問題を解く時の障壁は主に二つあるよ ①計算の速さと正確さ ②方針を立てる知識があるかどうか どちらが足りてないと感じるかな?正直数学的なセンスってのはどうしても存在するんだけど、そのセンスってのは①と②の身につける「速さ」なんだよね。理解の速さだから遅い速いは存在します。 でも逆に言えばどんな人でも数学は出来るようになります。 ①に関しての勉強 以下の2点を向上させよう! ・数値計算能力 これは昔からやってるよね。小さい頃で言ったら100マス計算とかやってたかな? →これは高校数学でも必要になってくるけど問題を解いてれば自然に早くなるから練習量を積もう! ・式変形能力 これは式のどの部分を展開したら楽に計算できるかとか、どの部分を置き換えたら綺麗に見えるかとか… つまりケアレスミスを無くしたり計算量を減らす能力です。 →これは先生によって教え方に差があったりするから良い先生だと割とすぐ身につくよ。問題集とかは計算過程を一から載せないといけないからそこからはあまり学べないね。 ②に関して これはあーちゃんの現時点では完全に努力値だね。 高校一年生くらいの問題だと一分野に対しての解き方を問われます。やり方は大体決まっててそれが思いつくかどうかの勝負だから、4stepで解けない問題、解放が思いつかない問題がある場合は単純に練習不足だね。
→練習量が大切なんだけど、頭の中で今までやった問題をまとめる力も必要になってくる。「この問題はこう解く」っていうのが「こういう問題はこれかこれかこれで解く」みたいに解法に幅が出来てくると強くなるから別解とかもしっかり見てね。 まとめると 今数学の才能がないって諦めかけてるかもしれないけど高校一年生から数学の才能なんて関係ないわ! ってか高校数学で才能はあんまり関係ないんよね… 要は勉強量と勉強の仕方です! 次に冬休みの勉強について!! この続きは他の人に答えた時のコピペになってしまうんだけど、もし良かったら問題集の完成のさせ方の参考にしてね! ①4ステップの問題を見て、回答の方針が立つか(この問題はこういう解き方をしますってのが人に説明できるかどうか)を判断して出来るならば問題に○をつけて下さい。無理なものには△をつけてください。全部の問題に対してこの作業が終わったら②にいきましょう。 ②△の問題の解答を読んでみてください。「あ!こんな感じだったな!」ってわかるものは△のままにしておきましょう。「何だこれ?」ってなったら×をつけましょう。判断の目安は、一回解答を読んだ後解答を見ずに問題に答えられるモノを△にしましょう。 ③×になってるところを1日5〜10問ずつ解いていきましょう。二周目から解答を見なくても方針が立ってきたら△に書き直しましょう。 ④残った×の問題は解決しないとこれから先あなたがずっとミスをし続ける問題なのでいつでも見れるように印刷したり、日替わりでスマホのトプ画にして頭に刷り込みましょう。 ⑤④と同時並行で△の復習をします。問題を見て解答をどういう風に答えれば良いかの方針を立てられるか何回も確認しましょう。実際の計算はやらなくて良いです。 これが出来たら受験で大体の問題は解けるようになってるよ! あんまり他の問題集に焦って手をつける必要はないかな。 今の時期に数学を頑張ろうと考えられてるのはとても良い判断!!!頑張って👍
回答者のプロフィール画像

yuya

東京工業大学物質理工学院

145
ファン
11.8
平均クリップ
4.8
平均評価

プロフィール

【経歴】 公立中学→私立滑り止め高校(都立落ち)→現役東工大→東工大大学院→来年度就職 「受験期に無理な勉強やストレスで何度も体調を崩しました。自分のような人を減らせるように受験生の力になりたいです。」 「ファン」→「メッセージ」で相談乗ります❗️ 連絡ください🙆‍♂️ ※現在指導は募集していません

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(2)

あーちゃんのプロフィール画像
あーちゃん
12/16 13:34
遅くなってしまい申し訳ございません🙇‍♂️ とてもためになるご回答ありがとうございました。 周りの人が1回習ったら感覚で応用問題までスラーっと解けてしまうのに、私はその公式の構造や作り方などを1から全部理解して、例題をゆっくり先生とやってからでないと応用問題まで辿り着かないという感じなのですが、その時に理系の頭じゃないな、と感じてしまっています。 また私の不足している点として、①②どちらも当てはまっていました。教えていただいたことを意識して勉強の仕方と量を改めていきます。 冬休み中にすることについて、とても具体的に教えていただき、ありがとうございました😭さっそく実践してみます!毎日数学に触れ続ける、ということを意識する冬休みにします。 まだ諦めず、夢に向かって頑張ります。志望校のひとつとして東工大も考えているため、全力で頑張ります!!ありがとうございました。
yuyaのプロフィール画像
yuya
12/16 14:37
今の時期から人一倍頑張れれば必ず志望校に受かれるから頑張ろう! 東工大おいで!すごくいい大学だからとても楽しいよ🙆‍♂️ 待ってるね👍

よく一緒に読まれている人気の回答

数学への苦手意識
こんにちは、僕も高1の頃は定期テストで0点を取るほど数学がダメダメだったので、数学への苦手意識はとても共感できます🥲 しかし以下のような勉強をすることで最終的に数学を武器に合格できたので、お伝えしようと思います! 苦手意識がある高校1年生ということで、過去問とかをやる段階ではないと思うので、割と基礎的なほうの段階についてお伝えしようと思います。 大前提を先に言います。 ①「どんな問題も、解く過程を全て紙に書いて、記述する」 二次関数の頂点を求めよといっためちゃくちゃ基本的なものでも面倒ですが絶対に途中過程を書いてほしいです。 ②「正解した問題は別解を考え、間違えた問題はできるようになるまで繰り返し続ける」 解く引き出しを増やし、解けない問題を無くしましょう。 模試でも同じで、復習の際には、解けなかった問題は絶対に解けるように、合ってた問題は別解がないか考える(楽しみながら!)ことを大切にしてほしいです。 ③「計算ミスは実力だ!!」 計算ミスだから、といって放置しないことです。計算ミスをしたら、どこでミスしたのか探して、最初から解き直しましょう。仮に共テや二次で計算ミスしたら命取りです。本当に数十点飛びます(経験あり)。 ④「解説見てもわからなかったら人に聞く」 学校の先生でも、数学できる友達でも、塾の先生でも、だれでもいいので、わからなかった問題は質問しましょう。放置しないことです。ただし、聞く前に自分で考え抜きましょう!!それでもわからなかったら聞きましょう👍 (1)やった参考書について (2)意識すること (3)これで到達するレベルはどれくらいか (1) まず基礎問題精講をやってみましょう。こんな簡単なのやる意味ある?って思っても、意外と解けない問題ってあります。そういう問題を解けるようにしましょう。基礎問題精講に関しては解けない問題は一個もない!全問すぐに解答を書き上げられる!っていう状態にしましょう。 次に青チャート、FocusGoldといった網羅系の参考書です。これもとても重要で、この先難問に当たったとき、「考える」ための「引き出し・手段」として、必ず身につけなければならないものばかりです。絶対に完璧にしましょう。仮に数学が偏差値60くらいあるとしても今一度やり直してほしいです。意外と解けない問題、あります。 ここは何周もしてほしいです。(ぼくは高2のときに青チャート1A2Bを全問3周しました、このおかげで数学偏差値49→73になりました) 面倒ですよね、、、けど受験勉強は気合いが大事です。やるしかないのでやりましょう。例題と練習問題がありますが、全部やりましょう。 青チャートは、高2,3になっても、模試で苦手分野がはっきりしててー、っていう場合にその分野を全問解く、などしましょうね!!基礎は本当に大事です。 次に1対1です(僕は挫折してしまいました)。 結構難しいです。1A2Bのうち、AとBはいらないかなーと思いました。正直ここは全部やりきれなかった、、でもいいと思います。しかしやれば得られるものはとても大きいです。たとえば、引き出しがとても増えるし、計算が重いので計算力がつきます。ぜひやり抜きましょう。例題と演習題がありますが、他の科目とのバランスがとれるようなら演習題もやりましょう。 (2) ①「本質」「定石」のようなものを意識してみましょう。 たとえば、「二次関数のグラフとx軸の交点は、二次方程式の解」「確率はすべてのものを区別する」「図を描いて考えてみる」「二次関数に帰着する」「〇〇=tと置いたら変域を考える」などです。これは、基礎的な段階でも意識してほしいし、その先の段階(旧帝の入試問題など)でもずっと意識すべきことです。こういう基本的なところで大きく差がついてしまいます。 ②上に挙げたもの“だけ”をやってると、飽きます。そしてつまらなくなります。そんなときは、入試問題や模試の過去問を解いてみましょう。オススメなのはセンター数学です!(共テじゃなくてセンター!) センター数学は基礎力を測るにはとてもいいものです。たまーにやってみましょう。時間も計りましょう。ここで注意点ですが、選択問題もありますが、時間測るときは選んでいいですが、その後選ばなかった問題も解きましょう!大きく意味があるものになります。 ③目的意識を持って勉強しましょう。「受かるため!」というものではなく、たとえばこの勉強であれば、 「苦手分野をつぶす」 「応用問題を考えるための引き出しを増やす」 「基礎を固める」 といったものです。 ④「引き出しを得る」ためのものですが、基礎的な問題、特に二次関数以降の分野においては、常に「考え」て解きましょう。①を意識するような感じです。 ⑤細かいことを意識しましょう。たとえば、 「分母に文字や式が出たら、分母が0にならないか確認する」 「〇〇=tとおいたとき、変域を書く」 「判別式は二次方程式にしか使えない(2次の係数が文字のとき、(文字)=0のときを確認しているか)」 などです。今の段階から意識しましょう。こういう細かな点が、入試や模試の採点の大事な要素となっていますし、数学を「考える」大事な要素です。 (3) ここまでやれば、進研模試でいえば偏差値70〜75まではいきます。旧帝大のやや易〜標準レベルの問題を、時間はかかるけど解けるようになります。一橋志望ということでもっと高いレベルを目指してほしいですが、焦らず、まずは基礎を固めることです。地に足つけて、ぜひ頑張ってください。
京都大学教育学部 くま
10
2
不安
不安カテゴリの画像
数学が苦手です
こんにちは、質問者様が目指されている上智大学理工学部と私の通っている大学が、近い立ち位置にあると考えましたので、回答させていただきます。 まず、英語の話からさせていただきます。英単語の学習に関しては、質問者様がされているように電車の中などの空き時間に行うのが習慣的に行うことができてよいと思います。 普通の学習方法は赤シートなどを用いて行う方法だと思います。間違えた単語にチェックをつけるなどすると効率的に学習できると考えます。英単語を記憶するコツとしては、単語のイメージを掴むことだと思います。単語帳には複数の意味が載っているものが多いですが、それらの意味から共通したイメージを掴み、そのイメージを記憶するのが個人的にはよいと思っています。 逆に、英文法に関しては短い期間で集中して学習してしまっても問題ないと考えています。私は高2に上がる直前でコロナ期間が始まり、休校になってしまったのですが、時間のあったその期間に集中して英文法の学習を行い、それ以降は英文法の勉強をほとんどしていません。短い期間で集中的に行うことで、学習した内容を忘れる前に、全範囲を終わらせることができ、体系的に頭に入れることができたと思います。今はコロナ期間ほど時間をとることは難しいと思いますが、夏休みや冬休みに時間が取れるのならば、そこで集中して学習しても良いと思います。 数学に関してですが、数学は他の単元とのつながりが深い単元とそうでもない単元があります。具体的には、二次関数や三角関数はその後習う微分積分などでも登場しますが、場合の数、確率などはほとんど登場しません。基本的には数学Ⅰ、Ⅱの内容がその後の内容とのつながりが深いものとなっていると思います。質問者様は理系とのことですので数Ⅲまで扱うと思うのですが、数Ⅲの微分積分や極限にもそれまでに習った内容が出てきます。よって、学習の順序としては数学Ⅰ、Ⅱを先に仕上げるのがよいと思います。場合の数、確率、数列などの内容は独立している部分が大きいため後に回しても問題ないです。 学習法としては解法暗記が重要であることは間違えないです。しかし、解法暗記といっても解法を理解した上で覚えるのであって、理解しないまま覚えるわけではないという点には注意が必要です。入試問題は、大学にもよりますが教科書や問題集にあるような典型的な問題が多いわけではなく、大抵はある程度捻った問題が出題されます。そのような問題を解くときに解法を理解していないと太刀打ちできないと思います。また、入試問題を解く上では、自分の知っている解法に帰着するように問題を解釈したり、式変形を行う必要もあります。このような力をつけるには問題集よりもクセのある問題が多く、本番に近い形で学習ができるため、過去問演習が最適だと思われます。問題の形式や、難易度、くせなどを知るためにも、早い段階で過去問を解き始めることは重要です。もちろん、直前に解く分を残しておく必要はあると思います。したがって、形式は少し変わってしまうと思いますが、似たような難易度の問題を出す他大の過去問を解くというのもおすすめです。 また、問題集を使う際にはあまり多くの問題集に手を出しすぎないことが重要であるというのはよくいわれているとおり正しいと思います。もちろん、難易度によって問題集を分けることは必要だと思いますが、基本的には学校で配布される問題集に追加して難易度ごとに1冊か2冊に留めるべきだと思います。理由としては、複数の問題集に手を出した場合、それぞれの問題に対する理解度が低いまま終わってしまうことがあるからです。私は1年、2年のときは比較的多くの問題集に手を出していましたが、結局絞って取り組む方が効率的である、という結論に落ち着きました。 理解力に関する記述がありますが、理解力を上げようとするのは悪手だと思います。まず、理解力というものは簡単に上がるものではありませんし、恐らく貴方が思っているほど個人差は大きくないと思います。身の回りにも理解力があるように見える人はいると思いますが、同じ学校に通っている人くらいであれば、それは理解力の差があるのではなく、それ以前の内容をきちんと学習して、理解しているからすぐに理解できるという差だと思います。したがって必要なのは理解力などというふわっとしたものを改善しようとすることではなく、今まで習った内容をしっかり学習し直し、理解することであると考えます。 物理に関しては、数学の内容はそこまで必要としないと思います。二次関数や三角関数は出てくるのでそこは理解している必要がありますが、それ以外はそこまで必要としないと思います。微積を使うやり方もありますが、必ずしも必要となるものではないし、微積の簡単なイメージと、基礎的な計算方法だけ知っていればできるので問題ないと思います。 長くなってしまいましたが、ある程度自己分析ができていて、やる気もあるようなのできっと成績は伸びていくと思います。目標を高く持ち続けることは大事だと思うので、挫けることがあっても頑張り続けてください。応援しています。
慶應義塾大学理工学部 りくと
5
1
理系数学
理系数学カテゴリの画像
本当に2年で成績が伸びるのか
私も数学が苦手な人間でした。 そういう意味でこんな問題解けるようになるのか?と不安になった記憶があります。 数学や英語は成績が上がるまでに時間がかかる科目です。 基礎を積み上げて盤石にし、その上で標準レベルの問題(模試や入試等でよく出てくる典型的な問題)を解けるようにしていく必要があります。その訓練がある程度形になると、おそらく数学への苦手意識は解消されると思いますので、このレベルまで持ち上げられるように努力しましょう。 基礎を固めることに置いては、まずは教科書の例題を参考にどういった動きをしているのか、何をしようとしているのかを1つ1つ丁寧に追って理解します。 その上で、同じレベルの練習問題などを、上で理解したことを参考にしながら自力で答えに持っていくことができるか試します。教科書の練習問題や参考書に載っているようなその単元におけるごく簡単な問題をまずはスラスラ解けるように何度も繰り返してください。 その後、上で理解した知識を駆使した基礎を少し発展させたような問題を解く練習をします。 ここまでできて、基礎は完成です。 続いて、標準問題です。 入試までに発展レベルを解けるようにならなくては!と焦る受験生は多くいますが、本質は違います。 案外、この標準レベルの問題がきちんと解けるか否かで変わってくるものです。 いろいろな参考書や模試、本番の入試でよく見る問題が多いために軽視されがちですが、ここをきちんと満点もらえる答案を作れるか、これが合否を左右するといっても過言ではありません。 では、それはどの問題か?と聞かれると表現しにくいですがおそらく参考書では「標準」とか「★★(発展問題が★★★だった場合)」みたいな表現をされていると思います。教科書で言えば、章末問題の後半にあるような問題です。 このレベルの問題は、与えられた条件から基礎で理解した知識を使って、分かっていること(条件から言えること)を書き出します。その上で、基礎で演習したような動きを繰り返して解いたり、他の単元の知識を使って解法を編み出していくことになります。 はじめは動けないと思うので、解答を見ながらでも構いません。問題から与えられた条件をどのように読み取り、それをどのように噛み砕いていくのか、その動きを追って何をしているのかを理解してください。 その理解が済んだら、自分できちんとノートに記述して実際に答案を作ってみてください。 この繰り返しです。 数学が苦手ですと、勉強するのも嫌になってくると思います。それでも、諦めずに1つ1つ丁寧にこなしていってくださいね!
東北大学教育学部 まー
13
0
不安
不安カテゴリの画像
苦手な数学を克服したい……
はじめまして。私も昔数学がとても苦手で、模試でも足を引っ張っていました。そんな私でも共通テスト数1A、2Bともに9割を超えることができた勉強法なので、かなりおすすめです。 まず、数学が苦手だという意識を変えるために基礎を完璧にします。 具体的にはフォーステップのアッサリスク付きの問題を(習っている範囲で大丈夫ですが)全て解きます。問題を解いた後は丸つけと解説(学校で解答が配られている場合)を読み、間違えた問題に印をつけます。この時、答えは合っているけれど解法が寄り道しているものもチェックしておくことがおすすめです。一通り終わったあとはこれを何度も繰り返します。繰り返すうちに自然と数学の問題の傾向が頭に叩き込まれ、多少問題の形が違うものにも立ち向かうことができるようになっています。 大体の問題が解けるようになったら(大体3週)、青チャートをまた同じ方法で解き進めていきましょう。青チャートはフォーステップよりも解説が詳しいので、解説を必ず読むように心がけてください。 青チャートのほとんどの問題を自分で解けるようになったら、次の参考書に移ってください。高校の先生におすすめを聞いてみるのが良いと思います。私は河合塾の文系数学の赤をやっていました。 また、これは質問と趣旨がズレますが、あくまで志望校に受かることだけを目標とするのなら、志望校の入試方式がどのようなものなのか(推薦、一般はどのような科目がどのような比重で見られるのか)を意識して勉強計画に反映することが大切です。 はっきり言って私は高1の時勉強なんて二の次だったので、きっと今から受験を意識している質問主さんなら、受験も大丈夫だと思います。大変だと思いますが、頑張ってください。
名古屋大学法学部 竹下那奈
4
0
文系数学
文系数学カテゴリの画像
数学ができない
こんにちは 僕自身は高1〜2のうちはなんとなく感覚で数学を解いており、範囲の狭い定期テストや基礎中心の間はなんとかなったのですが、高3になって演習や応用を始めてから、数学が周りよりできなくなってしまいました。 ですので、数学ができる人ではなくできない人からのアドバイスだと思ってください。 もちろん周りの数学のできる友人を見ていて気付いたこともお伝えしますが、数学できる人のアドバイスを求めていた場合はお役に立てないかもしれません。 申し訳ありません。 まず、数学のインプットの仕方ですが、これは質の高い例題を解いてその解説を読んだり受けたりして、さらにそれを復習して自分のものにするというのが良い形かなと思います。 質の高い例題というのは、参考書でも学校の授業でも塾などなんでも良いですが、各分野の典型的な問題をさしています。 これをまずは自力で解くのが大切です。 難しい問題は手も足も出ないかもしれませんが、自分の思考回路を知ることでインプットしやすくなると思います。 自分に何が足りないのか、逆にどこまでは理解しているのかをまずは知りましょう。 次に解説ですが、これに関しても参考書を読んでも他の人や先生にお願いしても良いですが、問題の解答ではなく、どういう思考でその解答に至ったかを特に見てください。 数学は暗記科目ではないと言われますが、ある程度定石があってそれを問題に当てはめ応用していくものなのかなと個人的には思っています。 その定石を解説を通じて自分でおさえてください。 僕は数学が苦手だったので定石を覚えてしまって、これは◯◯の問題だから◯通りの解法があって、今回はこれかな?というふうに解いていました。 もちろん、本来は例題の類題や同じ分野の問題をこなすことで定石を身につけると良いと思います。 高2のうちは特にいわゆる問題集をやったほうが良いです。 僕が数学が苦手だったのは高2までで全然問題集をやらず例題だけやっていたからでした。 例題と似た典型問題は解けるので、定期テストや簡単な模試は解けるのですが、高3になり実際の入試問題やちょっと捻った問題を解くとダメという感じでした。 そのため、高2のうちになるべく多く問題に触れておくと良いと思います。 高3になると余計に他の教科に力を入れなくてはいけなくなると思います。 そのためにもなるべく高2のうちに英数は完成させておきたいところです。 もちろん数学が苦手でしたら高3でもある程度力をいれる必要がありますが、たくさん問題を解けるのは高2までかなと思います。 少し話がそれましたが、問題集などの問題を解くときについて書きます。 問題を多くやる理由は見たことある問題を増やすという意味と定石をどう運用するかを身につけるという意味があります。 見たことある問題が増えれば、初見の問題に対してあの時の解法を試してみよう!と思える機会が増えるでしょう。 また、問題演習をこなす中でインプットした定石を自分のものにできると良いと思います。 次に、苦手意識に関して。 これについては成功体験を積むのが一番かなと思います。 といってもなかなか難しいですよね。 僕が問題演習をサボっていたのはどうせ解けないだろという気持ちがあったからでした。 でも今思えば、数学が苦手なのだから一周目でできるなんて思ったのがだめでした。 結局入試で解ければ良いのだから一周目で解けなくても、二周三周してでも自力で解き切れば良かったとお思います。 そうすれば自分の力にもなるし、何より解ける問題が多くなれば数学への苦手意識も改善したと思います。 中々すぐには数学への気持ちは変わらないと思いますが、好きこそものの上手なれ、ということでやっぱり数学を好きになるのが成績upの近道だと思います。 理科社会のように暗記した知識ベースではなく、定石という武器をどう使うのかという思考力が試される数学は、難しいですがそこが面白みなのではないでしょうか。(数学苦手だった僕がいうのも変ですが) 中々短期で成績upは難しいかもしれません。。 でもやっていけば必ず伸びる科目ではあります。 ぜひ腐らずに続けていってもらえたらと思います。 緊張で他の教科に影響してしまうことに関しては、もう少し自分に(というか数学に)甘くても良いかなと思います。 数学は苦手なんだからと割り切って、他の科目よりは緩いペースで実力をげていけば良いのではないでしょうか。 高3になってもそうだと思いますが、自分のたてた計画というのは中々完璧には遂行されないものです。 特に苦手科目は後回しにしたり、他教科よりも計画と違ったりすると思います。 もちろん自分を律するのも大切ですが、それで思い詰めてしまうのは他教科にとっても悪影響です。 数学に関してはある程度ゆるい計画を立て、むしろ息抜き的に他教科をやっても良いかもしれません。 めちゃくちゃ長文になってしまいましたが、参考になったら嬉しいです。 また分からないことや疑問点あれば気軽にコメント・質問してください。 では。
北海道大学医学部 たくと
11
5
文系数学
文系数学カテゴリの画像
理系になりたい
初めまして。rockyyyと申します。 数学の勉強法についてお答えします。 結論から言うと、数学は問題の解法を自分の中で完璧に理解して落とし込むという勉強法が良いのではないのかと思います。 それでは、数学は暗記科目なのか?と思われるかもしれません。しかし僕は、以前別の受験生さんにもお答えしましたが、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そしてそのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学を解くときは、その問題に対してただ決められた解法を思い出して書き出すという訳ではありません。数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今まだ高1であられるので、今からしっかり勉強していれば、必ず大丈夫です。物理化学などの勉強法についても僕は他にも投稿させてもらっているので、よければ参考にしてください!受験応援しています!
大阪大学工学部 rockyyy
3
2
理系数学
理系数学カテゴリの画像
数学が一向に伸びなくて辛い
こんにちは!プロシュートと申します。 数学の勉強法について紹介します! まず、数cの分野が得意ということは素晴らしいです!しかし数cの分野が満点近いにも関わらず6割ほどということは数2bの分野が公式や定理の段階で苦戦している可能性があります。間違えた箇所を自分が使っている網羅系参考書で確認し印をつけておくと良いと思います。 全ての分野で7割以上正解できたらそれ以上は共通テストへの慣れで点数は上がっていくのでまずはそこを目標して下さい!! ここからは模試や2次試験に向けた数学の勉強の仕方を紹介します!! [勉強範囲] 理系ということで2次試験には数3cから多く出題されます(5題出たら3題は数3c残りは整数や確率といった具合) つまり数3cを制したものが受験数学を制すると言っても過言ではありません❗️ そして数3cの分野にはそれぞれ数1a2bと深い関わりを持った分野があります。 極限なら数列、複素数平面ならベクトル、平面上の曲線なら軌跡、微分積分も数2から始まっています。以上の分野を中心にやることが合格までの近道と言えます!(整数や確率は頻出ですが独立した分野なので個別に勉強が必要) [勉強方法] 次に勉強方法です。 ステップ1 まずは公式や定理を頭に入れ、網羅系参考書などを使い基本的な問題の解き方をマスターしましょう オススメの参考書は難易度別に 下:基礎問題精巧、黄チャート 中:青チャート 上:一対一対応の数学 などがあります。 ステップ2 次に1で手に入れた知識を運用する練習です、模試や次のレベルの参考書などで見たことない 問題に当たると解けなくなる人はここの練習ができてないことが多いです! 具体的には まず問題を見る、この時点で解法が浮べばそのまま解きます。大抵は浮かばないので手を動かしてなんとか自分の知ってる解法が使える形に分解します。(例えばnの自然数が問題に含まれている時は1、2、3と小さい数を入れてみて規則性がないか実験してみる。複素数平面なら X+Yiの形を代入して解けるのか、r(cosθ+isinθ)の形を代入して解けるかなど、、) 今例に出したような手の動かし方を学べる参考書は少ないですが紹介します。 ・ハイレベル数学の完全攻略 ・世界一わかりやすい阪大理系数学合格講座 ・世界一わかりやすい京大理系数学合格講座 京大志望でしたら世界一わかりやすい京大理系数学を解くと良いと思います。 ステップ3 最後に計算です。微積などはここの割合が大きく、逆に整数や確率はステップ2の割合が大きいです。 一朝一夕で身につくものではありません、解法が頭に浮かんでも答えを見ず必ず答えまで出すようにしましょう。 最後に 国立は教科数も多く時間があってもあっても足りないと思いますがやらなければいけない事をリストアップし一つ一つ潰して行けば間に合います。頑張ってください!!!!
東京工業大学環境・社会理工学院 プロシュート
4
1
理系数学
理系数学カテゴリの画像
数学が苦手すぎる高一
数学に関してはどのような勉強をされていますか? 正しい勉強方法で勉強すれば数学は必ず苦手ではなくなります。(得意科目まで持っていくのは難しいですが) 数学を勉強する上でまずは公式を正確に暗記しましょう。社会等に比べれば暗記する量はたかがしれてるので頑張ってください。 次に覚えた公式を実際に使ってみましょう。これは教科書の例題や演習問題で大丈夫です。 ここまでは学校の授業内で行うのがベストですね。 次にすべきことは基本的な問題の解法を暗記してしまうことです。数学で暗記?と思われるかもしれませんが基本的な問題の解き方に関しては自分で考えるのではなく頭に入った上で応用問題の解き方を考えるものです。基本問題の解法を暗記していない人は最初から解き方を考える必要があるため、ここで苦手になる人が多いように感じました。 そのためチャート式であったりフォーカスシリーズ等の網羅系参考書をまずは完璧に解法暗記してしまいます。 もちろん解法暗記の前に解法の理解をしてくださいね。 ここまできちんとできれば数学は苦手ではなくなっていると思います。基本的な問題(共通テストレベル) の問題に関しては時間さえあれば全て解けると断言します。 ここから得意に持っていくためには応用問題が解けるようになる必要がありますが、苦手を克服したいとの主旨からは外れるためここでは控えさせていただきます。 まずは上記を参考に勉強してみてはいかがでしょうか?定期テストのレベルがどれほどかは存じ上げませんが今よりは確実に点数が上がると思います。
大阪大学工学部 T.T
19
4
理系数学
理系数学カテゴリの画像
数学苦手の文系がテストで高得点を狙うには
こんばんは。 私も数学がずっと嫌いでした。しかし、大学受験では数学が必要だったため向き合わざるを得ず、模試のたびに「わたしって本当にできない」と感じていました。 これはあくまで私の体験談なので参考程度に聞いていただければと思うのですが、私は数学はある程度暗記科目になると思います。 例えば、三角比の基本対称式の問題の際(sinθ+cosθの値がわかるとき)、まずはsinθcosθの値を出すんだな、などと方針が頭の中にパッと浮かぶかが大切です。 たくさんの引き出しがあれば、一つの問題に様々なアプローチができますよね。問題を見た際に、これは3つの方法で攻められるかな、、とまず方針が手を動かすより先に浮かぶようになれば大分数学に対して意識が変わってきた証拠です。 では、これをするためにはどうしたらよいか。 良問をひたすら解いて、様々な解法の暗記→もう一度自分で解けるように→暗記 の繰り返しです。 私は受験のために予備校の数学の問題集を5周以上はしました。 きょうかさんは学校の試験対策ということですから、その範囲の青チャートで上の方法を試してみてはいかがでしょうか。 できないうちはとてもしんどいと思います。ですが、必ず力はつきます。 どうか諦めずに頑張ってくださいね。応援しています。
大阪大学人間科学部 なむ
19
0
文系数学
文系数学カテゴリの画像
何をやればいいかわからない
初めまして、こんにちは。 数学は僕も苦手でした。特に中学のときはさっぱりで、高校に入ってもいつも低空飛行でした。 しかし、色々脅され数ⅠAの「図形と計量」の分野を定期テスト前に死ぬ気で勉強するとそのテストでは9割近く取れ、数学に対して苦手意識がなくなりました。 当時はただ単に問題を片っ端から解いていただけでしたが、ある程度問題をこなすと数学についてだんだんと分かってきました。まず数学の問題についてお話ししたあと、何をやるべきか記載します! 私が考えるに数学が苦手な理由として、「問題を知らない」という状態があると思います。数学の典型問題にはいわゆる「解法」というものがあり、これを知ったうえでその解法に当てはめて計算作業をするだけです。これがいわゆる基礎的な部分で、全ての分野の基本解法を抑えると大体偏差値55くらいになります。 次のステップとして、一見すると解法が浮かばない問題にぶち当たります。これは応用問題と呼ばれるものですが、結局は前述の典型問題に帰着します。帰着までの手順が難しいのです。 さて何をすべきかですが、まず数学が苦手な状態であれば、全分野の解法を網羅する必要があります。 オススメは、『大学入試短期集中ゼミ〜10日でわかる』(より基礎からであれば同シリーズのExpress、緑のやつです)という問題集です。こちらは非常に薄く、まずこの解法を抑えておかなければいけないというものです。本当に10日で終わります。春休みを利用して進めればいいと思います。この時ただ漫然と解くのではなく、解法を体に染み付かせるように演習します。 ある程度基本的な解法を身に付けたら、次は青チャートなどで演習します。 青チャートは、基本的な解法はもちろん、次のレベルの応用問題の演習にもなり非常に有効です。毎日進めていく感じでいいと思います。 また、模試の得点などを上げるなら、分野別に演習をやりこむことをオススメします。場合の数と確率は毎回の模試で出ているように、頻出分野を長期休暇などを使って一気に演習します。一度大問をまるまる完答する体験をすると苦手意識が消えさらに勉強しようとやる気も出ます。 参考になれば幸いです。 また何かありましたら遠慮なくお尋ねください!
北海道大学法学部 Takuya
50
2
文系数学
文系数学カテゴリの画像