UniLink WebToAppバナー画像

公式の成り立ちは重要??

クリップ(3) コメント(1)
12/17 7:55
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

コッペパン

高2 大阪府 大阪大学志望

模試などの応用問題が苦手なのです。公式の成り立ち(証明など)を理解していないと応用問題は解けないですか? それとも公式を覚えて、あとは演習問題をたくさんやって色々なパターンに対応できるようにしたほうがいいのでしょうか?

回答

回答者のプロフィール画像

りんご

大阪大学人間科学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは。 公式は問題演習をしているうちに自然と覚えると思いますのでたくさん演習をすることをオススメします。 もちろん、証明などを理解することも必要ですが(定理であれば証明せよという問題が出ることもありますし)、私は必須だとは思いません。 どうしてそうなるのかどうしても理解できないところは丸暗記でも構わないと思っています。 でも、定義から定理を出せるようにしておいた方が(つまりきちんと理解しておいた方が)公式をど忘れした時に自分で導き出せますし、そんなにたくさん公式を覚える必要もないのでオススメはします。
回答者のプロフィール画像

りんご

大阪大学人間科学部

62
ファン
9.9
平均クリップ
4.5
平均評価

プロフィール

公立高校理系出身。[生物/化学/日本史] 好きな教科は国語。得意科目は数学。 英語の苦手を克服したり理系の中で孤独に国語を勉強したりしてきました…笑 勉強を苦ではなく楽しいものにしちゃいましょう! どんなことでもお気軽に相談してくださいね(*^^*)

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

コッペパン
12/17 8:20
答えていただいてありがとうございました! 公式を根本から理解しなくても応用問題は対応できますかね?

よく一緒に読まれている人気の回答

数学公式
文系ですが答えさせてもらいます。(数学は使ってました) 今でもそうなんですが、公式の仕組みが納得できないと個人的には気持ち悪くてしょうがないんですよね。 どうしてこの公式になるかを納得する →公式を暗記 →実際に公式を使って、使用方法と公式を頭に定着させる こんな感じですかね。 理由としては、1番はそうじゃないと気持ち悪いっていうのがあるんですが、、、笑笑 でも、実際問題、公式の導出を問われたりする問題ありますし、また、公式の仕組みが分かってないと解けないような問題も一定数あります。 特に、三角関数・微積分・シグマ計算あたりの公式は導出過程を理解できてると、数学的な思考力の幅が広がるイメージあります。 もちろん、導出過程を知らなくていいのもあります。でも、一回は導出にチャレンジしてみるといいです。それで、「あー、これは公式だけ覚えておけばいい感じかな?」みたいなやつもたくさんあります。導出過程がめんどくさかったりするから、わざわざ公式にされているんで、それを覚えてしまうこと自体悪いことではないです。 公式の結果だけを覚えておくパターンのやつは、とくに物理・化学に多い印象ですね。「実験の結果、こうなった」とか、「この公式を定義とする」みたいのは、理科系では多いです。そういうのは、あまりこだわらず、一回くらい説明書き読む程度でいいと思います。
慶應義塾大学商学部 タイ
4
2
理系数学
理系数学カテゴリの画像
東工大志望校高二です。
めっちゃわかるわ〜!!!!その気持ち。 定期考査の時は問題覚えてるからスラスラ出てくるんだけど、数ヶ月後の模試になると出て来なくなっちゃうんよな… 公式っていっても覚えたほうがいいのと覚えなくてもいいのがあるよね。それについて少し下に書こうかな。 三角関数の定理とか公式とか結構色々あるよね。和積の公式とか積和の公式って覚えさせられるかと思うけどあんなの覚える必要はないからね。加法定理さえ覚えてれば全部導けるから。 定期テストで完璧に覚えるべきなのは「定理」ね。 これは「Apple」って言われたら頭の中で「りんご」が浮かぶくらいに当たり前にすることが大事。「加法定理」って言われたらこんな形だな〜って頭の中で浮かんでくるようにすること。 逆に「公式」は定理さえ覚えてれば問題用紙の端っこに書いて出せるからおぼえなくていい!導き方だけ3.4回練習しとこ? 人間だから全部の公式を完璧に覚えるのってすごく大変だと思う。ただでさえ君は国立を目指して科目数も多いから他にも暗記することが沢山だと思う。一回試してみて自分に合うやり方を見つけて見てね!
東京工業大学物質理工学院 yuya
1
2
理系数学
理系数学カテゴリの画像
公式の意味を理解し、導けるようにすることに時間をかけるべきか
こんにちは。公式の理解と導出についての質問ですね。 簡単にいうと、理解するべきものと覚えてしまえばよいものがあります。 数学は暗記科目ではないですが、例えば中学校で習った二次方程式の解の公式など、覚えなくては問題が解けないものも多くあります。 しかし、こういうものはたいてい問題を解き続けていれば自然と覚えてしまうものなので、わざわざ暗記しようと気負う必要はありません。その分問題を解いて欲しいです。 導出すべきものとしては、例えば半角の公式や3倍角の公式です。2倍角は自然と覚えると思いますが、上記2つの公式は使用頻度が低いため覚えるよりは毎回導出す?のをオススメします。 導出の手順は教科書や参考書に載っています。見ながらノートに書くでも良いので一度は導出の流れを掴んで欲しいです。 ちなみに、難しいですが導出を頭の中だけでするのは計算練習や頭の体操とても良いのでオススメです。 導出すべきものとそうでないものの見分け方としては、教科書や参考書に導出方法が載っていなくて、かつ使用頻度が高いものは導出せず、覚えてしまう。そよ逆のものは導出過程を一度は経験しておくという形で良いと思います。 以上です。参考になれば幸いです。
北海道大学水産学部 しみしみ
11
0
理系数学
理系数学カテゴリの画像
公式の証明
こんにちは!東北大学文学部のkitaです! お答えさせて頂きます! 理想としては、教科書で習った公式は証明できないといけません。 大学の先生に、参考書にあったよね?と言われても知らん!と言えますが、教科書でやったよね?、と言われたら何も言えません😅 ただ、全てを意味もなく丸暗記するのはナンセンスです。 そこで、僕が実際に行っていたのは、何度も出る公式(使用頻度が多い)や、今までに他の大学も含め問われたことのある公式、は必ずやりました! 例としては、正弦余弦、加法定理、点と直線の距離公式、積分の面積公式あたりが王道でしょうか。 他には、僕は数学が好きだったので、ちょっと勉強に疲れた時に、息抜きとして公式の証明を調べて、エレガントな証明方法があると感動してました(笑) 数学の定理や公式の証明は、1つの証明にさまざまな知識を必要とします。それなので、基礎がないと自力で行うのが難しいですし、逆に出来るようになるとかなりの数学がついた、と言ってもいいでしょう。 質問の的確な答えになっているか分かりませんが、入試に出るかも大事ですが、その定理や公式の根本を知ると、間違いなく入試に役立ちます! 最後に、たくとさんの目標が達成されることをお祈りしています。頑張ってください!!
東北大学文学部 kita
9
5
文系数学
文系数学カテゴリの画像
公式の証明について
こんにちは!回答させていただきます。 公式の証明を覚えているとどう役に立つかということですが、正直、受験に合格するという観点では公式の証明問題が解ける以上のメリットはあまりないです! 公式の証明では、受験数学のセオリーからみれば特殊な考え方を使うものが多く、考え方が他の問題に役立つ事も少ないのです。 数学という学問を修める意味では、公式の証明を理解していることは重要だと思いますが。 しかし、本番で公式の証明問題が解けるという一点だけで、覚える理由としては十分ではないでしょうか? 実際の入試でそういった問題が出ているわけですし。4完を狙うなら公式の証明問題は落とせませんしね! 余談ですが、三角関数の和積の公式とか、ベクトルの内積を使った三角形の面積の公式とかを、もし暗記せずにテスト中に導こうと思ってるなら、それはダメですよ!時間がもったいないですから。これはマジです! 長文失礼しました。頑張ってくださいね!
京都大学農学部 PaNDa108
5
2
理系数学
理系数学カテゴリの画像
答え見てもわからない問題
こんにちは!東工大理学院のひろと申します! 数学で、答えを見ても分からない問題がある時の対処法をお伝えしようと思います! まず、教科書に載っている基本事項が抜けていないか確認しましょう。大抵の問題は基本事項を抑えることが出来ていれば、解説を読めば理解出来るはずです!それでも分からないという場合は数学の先生に聞くなどして解決しましょう。その際も、ここまでは理解できたが、その先が分からないという聞き方をするとスムーズで仕事が早いでしょう。 では、教科書に載っている基本事項を抑えるとはどういうことなのかをお伝えします。まず、大切なのは公式を一通りマスターすることです。もちろん公式の丸暗記はよくありません。なぜその公式が導かれるのかを自分で説明できるようになって初めてその公式をマスターできたと言えるでしょう。実際に僕は公式は無理に暗記せず、なんとなくで覚えて全て導出できるようにしていました。あとは、問題を解いていく中で自然に使えるようになります。覚えようとして覚えるのではなく、使っていくうちに覚えるのが効率が良いと思います。また、公式をマスターした後に解く問題は教科書の例題程度で構いません。教科書の例題は舐められがちですが、重要な例題が沢山載っているのでしっかりマスターしましょう。その後は、教科書の章末問題、網羅系参考書といった順番で進めていくと良いでしょう。僕は網羅系参考書でFocusGoldを使っていました。この流れで進めていけば大抵の問題で解説を理解することは可能だと思います。(初見で解けなくても) 大切なのは、丸暗記しないことです。数学は暗記科目ではありません。必ず思考のプロセスがあります。それをおろそかにするといつか難しい問題に当たった時に行き詰まります。そうならないように、日頃から思考のプロセスを意識して数学の勉強をしてください。思考のプロセスとは、何故そのような変形をするのか、何故その公式を使うのかなどのことです。これを説明できるようになると、数学の力がどんどん上がっていくでしょう。 最後に、何故そうなるのかを意識しながら数学の勉強を進めてください。分からないことがあれば基本事項に立ち返って、周りの人に頼りながら頑張ってください!良い結果が出ることを心から祈ってます!!
東京工業大学理学院 ひろ
0
1
理系数学
理系数学カテゴリの画像
公式の証明
はじめまして! 公式の証明は度々入試に登場します。ただ1度やっておけばいざ出れば手が動くかも、ぐらいの期待値ですね。 入試は今まで見たことない問題も山ほど出ます。そんな中でもしかしたら出るかもをやっておく分には損はないかと思います。ヤマカンまで張る必要は絶対ないですが。もし出た時に「あの時やっておけば!!!」と後悔しないための安心材料ぐらいの感じです。 もちろん他の勉強とかの兼ね合いもあるので実力試しにやってみるぐらいでいいと思います。もれなくやらないと!って焦るほどでは無いです(その分野を展開するための始点なのでやったからといってもその分野の応用が身につく訳ではないですからね)。 以上、あくまで個人的意見なのであまりあてにしすぎないでください笑。 ただ公式を証明してしっかりと理解を深めるのも無駄なことでは無いと思います。 上手い時間の使い方ができることを願っています。
京都大学農学部 31
4
2
理系数学
理系数学カテゴリの画像
物理の公式をただただ暗記したくない
定理(公式)を暗記するかどうかはサクラサクさんの力量次第だと思います。 そもそも物理法則は人間が生活する中で考えた知恵を数式的に定義づけて、定理(サクラサクさんが言うところの公式)として使いやすくしているものだと思います。あんまり突っ込んだことを言うと物理の専門の方から怒られるかもしれませんが認識として持っていて欲しいのは、定義は必ず理解しなくてはいけませんし、定理を導く事ができない人は覚える(覚えるというより問題を解きながら理解する事で自由に使えるようになると言う表現の方が近いと思います)必要があります。 例えば運動方程式f=maはもともと人間の経験則からニュートンが定義したものなので覚えるのが嫌だとしたら、自分で実験をしながら導くしかないです…天才じゃなきゃ無理ですね。 定理で言うと例えば速度の式なんかは、加速度が速度の微小変化という定義さえ知っていれば定理はそれを積分すると出ますよね。(積分を習っていなければグラフ化して導出して考えると良いと思います。) どちらにせよ何度も導出している間に覚えてしまうのでそれをそのまま使うことになると思います。丸暗記でなにも考えずに公式に当てはめるのはお勧めしませんが、導出出来るものはしながら解いて慣れてきたら時間を短縮するために必要な公式を使うのが良いんじゃないでしょうか。
東京工業大学物質理工学院 yuya
9
2
物理
物理カテゴリの画像
数学について
初めまして。rockyyyと申します。 数学の勉強法において、最も重要なことは解法を見ながら理解することであると思っています。一度間違えた問題の解法を完全に理解しないままにしておくと、同じ問題に何度向き合っても解けないままです。なので解けなかった問題に関しては、解説をよく読み、理解することを重要視すると良いと思います。 具体的にどのようなことをすればいいのかというと、僕は解説を最初から最後まで逐一理解しながら読み進めていくことが良いと思います。 例えば、 「ここで、次のように式変形する。」と言ったような文言が出てきた場合、「なんかわからんけど、そう式変形するのね」と考えるのではなく、「なんのためにその式変形をするのか。その式変形でなんの得があるのか」ということを考えるということです。そうすると、「この式変形をすることで、このような操作が可能になるのか!」とか「こう式変形することでこの法則が使えるようになるんだ!」などの発見があるのではないかと思います。それを繰り返して、その問題の解法を完全に理解すると、その問題に対してだけでなく、似たような問題にも同時に対応できるようになると思います。「ここで、この法則を使いたいから、前学んだみたいにこうすることで・・」と言ったような感じで対応できてくるのではないかと思います。僕はそうして学んだ知識をノートに書き留めておき、チラチラ日常的にみるようなことをしていました。 そうすると、実際に数学において、未知の問題(自分が解いたことのない問題)に対しても、その問題を解くための様々な手法を思いつくようになり、それを使って解くことができるようになりました。成績も伸びて、数学がより楽しく、そして勉強が楽しくなったことを覚えています。 なので、数学の問題を解くことにおいて大事なことは、最初は解けなくても良いので解法を読んで、「こうすることでこの解法が使えるのか」ということや「こうすることでこの公式が使えるのか」となることが重要です。それを自分の言葉でノートなどにまとめておくとさらに良いと思います。僕は問題を解いてわからなかったため空いた空白に色ペンで「このようにすることで、この公式を使って問題が解ける」と言ったようなことを書いていました。そして今でもその手法で数学を勉強しています。 そして、話が変わりますが数学において慣れというものも僕は大事であると思っています。ある程度の知識(基本問題を一通り解くなど)を得た場合は、問題集などでひたすら演習を積んで、解説を読んでわからなかった問題に対する解法を学んで自分の言葉でインプットするということを繰り返すと良いのではないかと思います。そうすることで、この「問題見たことある!]となって、自然に解法が浮かんでくるようになると思います。そうなっていくとどんどん問題が解けるようになってくるので、数学が楽しくなり、また勉強するという好循環を引き起こしてくれると思います。 そして、理系においては数学に比重が大きい入試がほとんどなので、入試において優位に立てるようになると思います。最初の方は、まだ知識も足りていないかもしれないので全然解けないかもしれませんが、辛抱強くこうした勉強法を続けていくと、自然に解けるようになってくると思います。良ければ参考にしてください!!受験応援しています!
大阪大学工学部 rockyyy
12
3
理系数学
理系数学カテゴリの画像
模試の物理が出来るようになるには
慶應義塾大学理工学部の3年生です。 受験は物理だけを頼りに戦っていました。  まず覚えた公式が自分の直感と照らし合わせて納得のいくものかどうかを考えてみてください。もしそうでなければその公式の正体が見えてくるまで考えまくってください。  具体的には、公式をより簡単な自分の知ってる公式で表せられないかを考えてみてください。さらにこれにはどんなに時間をかけてもいいです。むしろここに物理の勉強時間の多くを割いて物理の世界観に入り込むことが大事です。  今まで覚えてきた多くの公式が簡単な式の組み合わせであること、形を変えただけであることに気づいたらこっちのものです。だんだんと「この公式はこれとこれですぐ導けるから覚えなくていいや」となってきます。さらに、そうやって時間をかけて何回も考えているうちに、自分で公式を導く必要すらなくなります。それは今までは公式という小手先の対処法を与えられていただけだったのが、物理の根本を知ってしまうことでその対処法を当然のように考える力が付くからです。  例えるならば、医療の現場で、「この症状の時はこの治療法」というように全ての症状に対して個別の道具と方法を覚え込んだ人は、いざ患者を前にした時に、「どの道具でどのようにすればいんだっけ」というように悩んでしまいます。さらに少しでも違った症状を見た時に対処できません。それに対して長年人の体について研究して熟知している人はどんな症状を見てもその根本の原因が分かるため、当然対処法もその場で考えることができます。  自分も最初はこんないろんな公式覚えられるわけない、ましてやそれらを状況ごとに使い分けるのは無理だと思ってました。ただこれをやっているうちに最終的には、力学で言うと物体が動いているかそうでないかで、運動方程式を使うか力の釣り合いを使うかの2択を考えるだけでほとんどの問題を解けるようになりました。今までは一本の木にたくさんついている葉っぱからどれを使うか決めていたのが、それをつけている枝を選ぶようになり、最終的には2本の太い幹だけを見れば良くなるようなイメージです。  自分は問題集を解こうとして解けなくて解説を聞いてよく分からず次の問題にいくという勉強にうんざりして、紙とペンだけでこのようなことばかりしていました。さらにある公式について腑に落ちたなと思ったら、それを使って身の回りの現象を例にして、具体的な重さや長さなどの数値を与えて考えてみたりしてました。  下手な文章でごめんなさい。とにかく物理を小手先で解くのではなく、物理そのものを自分のものにするつもりで長い時間だらだらと物理について考えてみてください。どこかで新たな発見があって、考え方がガラリと変わることがあると思います。頑張ってください。
慶應義塾大学理工学部 ゆー
27
7
物理
物理カテゴリの画像