UniLink WebToAppバナー画像

数学について

クリップ(12) コメント(0)
8/8 14:14
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

扇風機

高2 東京都 東京大学理学部(68)志望

数学が苦手です。数学は何度も問題と向き合えば自然と解けるようになるものですか? また解法を見ながら理解するのは効率的ですか?

回答

回答者のプロフィール画像

rockyyy

大阪大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
初めまして。rockyyyと申します。 数学の勉強法において、最も重要なことは解法を見ながら理解することであると思っています。一度間違えた問題の解法を完全に理解しないままにしておくと、同じ問題に何度向き合っても解けないままです。なので解けなかった問題に関しては、解説をよく読み、理解することを重要視すると良いと思います。 具体的にどのようなことをすればいいのかというと、僕は解説を最初から最後まで逐一理解しながら読み進めていくことが良いと思います。 例えば、 「ここで、次のように式変形する。」と言ったような文言が出てきた場合、「なんかわからんけど、そう式変形するのね」と考えるのではなく、「なんのためにその式変形をするのか。その式変形でなんの得があるのか」ということを考えるということです。そうすると、「この式変形をすることで、このような操作が可能になるのか!」とか「こう式変形することでこの法則が使えるようになるんだ!」などの発見があるのではないかと思います。それを繰り返して、その問題の解法を完全に理解すると、その問題に対してだけでなく、似たような問題にも同時に対応できるようになると思います。「ここで、この法則を使いたいから、前学んだみたいにこうすることで・・」と言ったような感じで対応できてくるのではないかと思います。僕はそうして学んだ知識をノートに書き留めておき、チラチラ日常的にみるようなことをしていました。
そうすると、実際に数学において、未知の問題(自分が解いたことのない問題)に対しても、その問題を解くための様々な手法を思いつくようになり、それを使って解くことができるようになりました。成績も伸びて、数学がより楽しく、そして勉強が楽しくなったことを覚えています。 なので、数学の問題を解くことにおいて大事なことは、最初は解けなくても良いので解法を読んで、「こうすることでこの解法が使えるのか」ということや「こうすることでこの公式が使えるのか」となることが重要です。それを自分の言葉でノートなどにまとめておくとさらに良いと思います。僕は問題を解いてわからなかったため空いた空白に色ペンで「このようにすることで、この公式を使って問題が解ける」と言ったようなことを書いていました。そして今でもその手法で数学を勉強しています。 そして、話が変わりますが数学において慣れというものも僕は大事であると思っています。ある程度の知識(基本問題を一通り解くなど)を得た場合は、問題集などでひたすら演習を積んで、解説を読んでわからなかった問題に対する解法を学んで自分の言葉でインプットするということを繰り返すと良いのではないかと思います。そうすることで、この「問題見たことある!]となって、自然に解法が浮かんでくるようになると思います。そうなっていくとどんどん問題が解けるようになってくるので、数学が楽しくなり、また勉強するという好循環を引き起こしてくれると思います。 そして、理系においては数学に比重が大きい入試がほとんどなので、入試において優位に立てるようになると思います。最初の方は、まだ知識も足りていないかもしれないので全然解けないかもしれませんが、辛抱強くこうした勉強法を続けていくと、自然に解けるようになってくると思います。良ければ参考にしてください!!受験応援しています!
回答者のプロフィール画像

rockyyy

大阪大学工学部

16
ファン
9.4
平均クリップ
4.7
平均評価

プロフィール

2次受験科目 数学 物理 化学 英語 共通テスト 理系科目 国語 日本史 進研模試、駿台模試、河合模試、全て受験経験あり 部活経験、大学体育会経験あり 京都大学大学院工学研究科 合格 大阪大学大学院工学研究科 合格 理系科目は得意です!よろしくお願いします! メッセでもオンラインでも気軽にどうぞ!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
235
33
理系数学
理系数学カテゴリの画像
答え見てもわからない問題
こんにちは!東工大理学院のひろと申します! 数学で、答えを見ても分からない問題がある時の対処法をお伝えしようと思います! まず、教科書に載っている基本事項が抜けていないか確認しましょう。大抵の問題は基本事項を抑えることが出来ていれば、解説を読めば理解出来るはずです!それでも分からないという場合は数学の先生に聞くなどして解決しましょう。その際も、ここまでは理解できたが、その先が分からないという聞き方をするとスムーズで仕事が早いでしょう。 では、教科書に載っている基本事項を抑えるとはどういうことなのかをお伝えします。まず、大切なのは公式を一通りマスターすることです。もちろん公式の丸暗記はよくありません。なぜその公式が導かれるのかを自分で説明できるようになって初めてその公式をマスターできたと言えるでしょう。実際に僕は公式は無理に暗記せず、なんとなくで覚えて全て導出できるようにしていました。あとは、問題を解いていく中で自然に使えるようになります。覚えようとして覚えるのではなく、使っていくうちに覚えるのが効率が良いと思います。また、公式をマスターした後に解く問題は教科書の例題程度で構いません。教科書の例題は舐められがちですが、重要な例題が沢山載っているのでしっかりマスターしましょう。その後は、教科書の章末問題、網羅系参考書といった順番で進めていくと良いでしょう。僕は網羅系参考書でFocusGoldを使っていました。この流れで進めていけば大抵の問題で解説を理解することは可能だと思います。(初見で解けなくても) 大切なのは、丸暗記しないことです。数学は暗記科目ではありません。必ず思考のプロセスがあります。それをおろそかにするといつか難しい問題に当たった時に行き詰まります。そうならないように、日頃から思考のプロセスを意識して数学の勉強をしてください。思考のプロセスとは、何故そのような変形をするのか、何故その公式を使うのかなどのことです。これを説明できるようになると、数学の力がどんどん上がっていくでしょう。 最後に、何故そうなるのかを意識しながら数学の勉強を進めてください。分からないことがあれば基本事項に立ち返って、周りの人に頼りながら頑張ってください!良い結果が出ることを心から祈ってます!!
東京工業大学理学院 ひろ
0
1
理系数学
理系数学カテゴリの画像
応用力
入試の数学の問題には2パターンあると思っています。 1° パターン化された問題(典型問題) 2° パターン化されていない問題 です。そんなに難しくない問題を出題する大学では、1°の場合が多く、1°の対策としては解法を覚えてしまうという手段があります。 しかし、いわゆる難関大は1°よりも2°を出題しないと受験生間で差がつきません。よって2°を出題します。 2°の問題は解法を覚えても意味がありません。では2°を解くためにはどのようなことをすればいいのか? 数学の問題を解く際、 問題を理解→解くための計画→計画したことを実行→自分の答えを見直す という流れで問題を解いていきます。 1°の問題では暗記している場合、 覚えていることを実行→自分の答えを見直す という解き方をしているため、2°に太刀打ちできません。 2°の問題を解くには 問題を理解→解くための計画 をする練習が必要です。 そのためには、 まずチャート式などの数学の基本事項が分かっている、理解している必要があります。 それを2°タイプの問題を解いて練習を積み重ね、思いつく手段を実行し、基本事項を組み合わせて問題を解いていきましょう。 数学は暗記する部分もありますが、それだけでは難関大には対応できません。頑張ってください。
京都大学薬学部 ちぇるゆう
4
0
理系数学
理系数学カテゴリの画像
数学の勉強の考え方
こんばんは、名古屋大学医学部のファルコンといいます。 なぜ?を意識して解けてるのは素晴らしいです。その調子で頑張ってください👏 さて、過去問になると解けなくなってしまう、という悩みですがおすすめの解き方として、逆算して解くという解き方してみてはどうでしょうか? この結果Aを得るには何が必要?→Bが言えればいい じゃあBを言うには何が必要?→条件Cを使えばいい など、論理展開を後ろから考えてあげれば想像しやすいですよ。 結局のところ数学というのは 解説を読む時→「なぜその式を使うのか?」「どうしてそういえるのか?」 自分で解答する時→「何が言えればいいのか?」「この与えられた条件はどこで使うのか?」 これを徹底していけば、必ず解けるようになります。 解説を読む時に「なぜ?」を意識して読むことは出来ているので、今度は自分の解答する時に欲しい結果から「何が言えればいい?」というのを考えてあげてください。 闇雲に解き進めるのではなく、根拠を持って解くことで自分の解答の何がいけなかったか?が見やすくなります。最初は間違った根拠スタートでいいので、根拠を持って解くことを意識してみてください!
名古屋大学医学部 ファルコン
28
9
理系数学
理系数学カテゴリの画像
数学 問題演習方法について
まず僕が思う数学の話をさせてもらいます。 数学はそういうものだと暗記しなくてはいけないところと理解しなければならないところがあります。それを覚えたり理解できたら次は簡単な問題で使いこなす練習をします。入試の問題は覚えたものを組み合わせて解かないといけないのでそれを組み合わせて解く練習をします。そして入試問題に慣れたら志望大学のレベルに高めて行きます。 入試の数学はどの分野のどの事項を使って解けばいいのか考えながら解かないといけません。 さて問題の青チャートですが、僕が思うに青チャートは簡単な問題です。一つの道具を使いこなす練習をします。これは考えるとかいうよりも使う事項を確認して使う練習をしています。なので使う事項を思い出して解いていって慣れていってください。しかしもし解けなかったら?その問題のキーとなることを覚えていたり理解できているでしょうか?出来ていなかったら解けるはずもないのでその事項を確認しましょう。んでそれを使って解いてみましょう。使うものを覚えていたり理解できていても解き方がわからなかったら?それは経験値不足です。答えを見てこうとくのか!と理解して自分でその解き方ができるようになりましょう。数学は答えだけあっていてもダメです。解き方があっているのか、他の解き方はないのか、一問一問大切にして行きましょう! 数学は解答を覚えても意味は少ないです。東工大の場合は覚える勉強をしてもいい点を取れないと思います。基本を理解、使えるようになって答えを導くため基本事項の組み合わせ方を試す経験をこれから積んでいってください。 上手く伝えれませんが、とにかく基本を大切に!頑張ってください!!
京都大学薬学部 ちぇるゆう
4
0
理系数学
理系数学カテゴリの画像
数学ができない
こんにちは 僕自身は高1〜2のうちはなんとなく感覚で数学を解いており、範囲の狭い定期テストや基礎中心の間はなんとかなったのですが、高3になって演習や応用を始めてから、数学が周りよりできなくなってしまいました。 ですので、数学ができる人ではなくできない人からのアドバイスだと思ってください。 もちろん周りの数学のできる友人を見ていて気付いたこともお伝えしますが、数学できる人のアドバイスを求めていた場合はお役に立てないかもしれません。 申し訳ありません。 まず、数学のインプットの仕方ですが、これは質の高い例題を解いてその解説を読んだり受けたりして、さらにそれを復習して自分のものにするというのが良い形かなと思います。 質の高い例題というのは、参考書でも学校の授業でも塾などなんでも良いですが、各分野の典型的な問題をさしています。 これをまずは自力で解くのが大切です。 難しい問題は手も足も出ないかもしれませんが、自分の思考回路を知ることでインプットしやすくなると思います。 自分に何が足りないのか、逆にどこまでは理解しているのかをまずは知りましょう。 次に解説ですが、これに関しても参考書を読んでも他の人や先生にお願いしても良いですが、問題の解答ではなく、どういう思考でその解答に至ったかを特に見てください。 数学は暗記科目ではないと言われますが、ある程度定石があってそれを問題に当てはめ応用していくものなのかなと個人的には思っています。 その定石を解説を通じて自分でおさえてください。 僕は数学が苦手だったので定石を覚えてしまって、これは◯◯の問題だから◯通りの解法があって、今回はこれかな?というふうに解いていました。 もちろん、本来は例題の類題や同じ分野の問題をこなすことで定石を身につけると良いと思います。 高2のうちは特にいわゆる問題集をやったほうが良いです。 僕が数学が苦手だったのは高2までで全然問題集をやらず例題だけやっていたからでした。 例題と似た典型問題は解けるので、定期テストや簡単な模試は解けるのですが、高3になり実際の入試問題やちょっと捻った問題を解くとダメという感じでした。 そのため、高2のうちになるべく多く問題に触れておくと良いと思います。 高3になると余計に他の教科に力を入れなくてはいけなくなると思います。 そのためにもなるべく高2のうちに英数は完成させておきたいところです。 もちろん数学が苦手でしたら高3でもある程度力をいれる必要がありますが、たくさん問題を解けるのは高2までかなと思います。 少し話がそれましたが、問題集などの問題を解くときについて書きます。 問題を多くやる理由は見たことある問題を増やすという意味と定石をどう運用するかを身につけるという意味があります。 見たことある問題が増えれば、初見の問題に対してあの時の解法を試してみよう!と思える機会が増えるでしょう。 また、問題演習をこなす中でインプットした定石を自分のものにできると良いと思います。 次に、苦手意識に関して。 これについては成功体験を積むのが一番かなと思います。 といってもなかなか難しいですよね。 僕が問題演習をサボっていたのはどうせ解けないだろという気持ちがあったからでした。 でも今思えば、数学が苦手なのだから一周目でできるなんて思ったのがだめでした。 結局入試で解ければ良いのだから一周目で解けなくても、二周三周してでも自力で解き切れば良かったとお思います。 そうすれば自分の力にもなるし、何より解ける問題が多くなれば数学への苦手意識も改善したと思います。 中々すぐには数学への気持ちは変わらないと思いますが、好きこそものの上手なれ、ということでやっぱり数学を好きになるのが成績upの近道だと思います。 理科社会のように暗記した知識ベースではなく、定石という武器をどう使うのかという思考力が試される数学は、難しいですがそこが面白みなのではないでしょうか。(数学苦手だった僕がいうのも変ですが) 中々短期で成績upは難しいかもしれません。。 でもやっていけば必ず伸びる科目ではあります。 ぜひ腐らずに続けていってもらえたらと思います。 緊張で他の教科に影響してしまうことに関しては、もう少し自分に(というか数学に)甘くても良いかなと思います。 数学は苦手なんだからと割り切って、他の科目よりは緩いペースで実力をげていけば良いのではないでしょうか。 高3になってもそうだと思いますが、自分のたてた計画というのは中々完璧には遂行されないものです。 特に苦手科目は後回しにしたり、他教科よりも計画と違ったりすると思います。 もちろん自分を律するのも大切ですが、それで思い詰めてしまうのは他教科にとっても悪影響です。 数学に関してはある程度ゆるい計画を立て、むしろ息抜き的に他教科をやっても良いかもしれません。 めちゃくちゃ長文になってしまいましたが、参考になったら嬉しいです。 また分からないことや疑問点あれば気軽にコメント・質問してください。 では。
北海道大学医学部 たくと
11
5
文系数学
文系数学カテゴリの画像
勉強方法
もともと数学は好きで得意だと思っていましたがある時スランプに陥ってなかなか成績が上がらなくなった時がありました。ある分野が全く出来なかったので、その時の勉強法を話したいと思います。 まず、教科書をじっくりと読みました。簡単な例題も読んだあと自分で解きました。分からないところは友人や先生に何度も質問しました。ある程度基本的な事項が抑えられたと思ったら問題集の簡単な問題を完璧にして、少しずつ難しい問題に挑戦しました。でもここでも躓いてなかなか前に進むのに苦労しました…そんな時は間違えた要因を探しました。たとえばこの公式を正しく覚えられていなかったから出来なかった、この発想が出来なかった、などです。 私は数学を本番で武器にしたかったので、徹底的にやりました。苦手な分野も典型的な問題は必ず出来るようにしました。 ある程度問題のパターンを暗記してしまうのもいいと思います。本番でぱっと思いつくためにはいろんな問題を解いてみていろんな発想を知ることが必要だと思います。頑張ってください!
慶應義塾大学理工学部 sk__8
41
0
理系数学
理系数学カテゴリの画像
初見で解けるようになるには
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
九州大学経済学部 riku
13
5
過去問
過去問カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像
数学が伸びない
はじめまして! 私が高校生の時にやっていた方法を書こうと思います! (公式は覚えていることが前提です) 1.問題だけを読んで、何も見ずに解いてみる 2.解けなかったら、解答のヒントを読む(ヒントがある場合)(記憶のインプット) 3.ヒントを元にして解いてみる→解けたら問題に丸印をつけておく 4.解けなかった場合、解答をよく読む→バツ印をつけておく(記憶のインプット) 5.解答のポイントと思う部分に線を引いて覚える(記憶のインプット) 6.すぐに、その問題の解答を見ずに解く(記憶のアウトプット) 7.数日後に、印をつけた問題に対してもう一度1~6を試してみる。1で解けたら印を消す。3で解けたらバツ印は丸印に書き換える。(記憶のアウトプット) 8.全ての印が無くなるまで1~7を繰り返す 数学は暗記科目ではありませんが、記憶力は使います。 記憶の定着には、インプットとアウトプットの両方をやることが大切です。 もちろん解答の丸暗記では、その問題専用の記憶となってしまい、応用ができません。(そんなに記憶力があるならそのメモリには英単語等を入れましょう!)(もちろん、公式は覚えましょう!) 数学で記憶力を使う場面は5の解答のポイントを覚えることです。 大切な部分をかいつまんで覚える方が覚える量も減るし、ポイントの組み合わせ方次第でほかの問題や応用問題にも活用できます! 人によってポイントと思う部分は違いますが、例えば絶対値と整数が等式で結ばれた方程式を解く際は、両辺を二乗して解きますね。この場合、「絶対値の計算では二乗する」ことがポイントです。 数学は長期戦なので、なかなか成長が目に見えずらいです。ですが、やった分は必ずいつか結果になるので諦めずにがんばりましょう!! 応援しています。
大阪大学工学部 合格GO
8
2
理系数学
理系数学カテゴリの画像