UniLink WebToAppバナー画像

数学I(図形と計量)

クリップ(3) コメント(2)
7/7 12:38
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

セナ

高卒 大阪府 関西医療大学保健看護学部(48)志望

△ABCにおいて、残りの辺の長さと角の大きさを求める問題(a=2√3、B=15°、C=45°) A=120°とc=2√2まで出せました。 残りのbは余弦定理で出すんだと思うのですが、cosCを使うと何度してもb=√6±√2になります。解答はcosAを使ってb=−√2±√6になってます。解答の意味は理解できるのですが、なぜ同じbを求めるのにcosAの余弦定理だとbが違う答えが出てしまうのでしょうか。このやり方でも答えが出る方、途中式込みの解答をどうか教えてください。。

回答

回答者のプロフィール画像

yuya

東京工業大学物質理工学院

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
回答させてもらいます! 見た感じ計算はあってそうですね! セナさんの疑問としては cosAの時はb=-√2+√6(b>0)が答えとして出るのに cosCの場合はb=√6±√2がb>0の条件でどちらも有効で、cosAの時と同じにならないのではないかという疑問だと思って回答しますね! この場合cosCで出てきたbの値に対して一つ有効な条件設定があります。それが「辺と角の関係」です。 もしかしたらこの時点でピンと来たかもしれませんが、角度が大きい角の対面の辺が長くなるよって感じのやつですね(言葉がラフでごめんなさい。回答に書くときはしっかり教科書通りのやつ書いてね笑) その関係性を角Cと角Bに当てはめてみると角度が小さい方の対面の辺bは辺cより小さい必要があります。 √6+√2と2√2の大小関係、√6-√2と2√2の大小関係はどういう風に考えるといいんでしたっけ? 一回考えてみてください🙆‍♂️(逆にいうとその考えがめんどくさくて回答はcosAを採用したのかもしれませんね…) また、他にも考え方があると思うのでこういう考え方もあるよ!ってのを思いついたら是非教えてくださいね🥸 頑張って!
回答者のプロフィール画像

yuya

東京工業大学物質理工学院

143
ファン
11.8
平均クリップ
4.8
平均評価

プロフィール

【経歴】 公立中学→私立滑り止め高校(都立落ち)→現役東工大→東工大大学院→来年度就職 「受験期に無理な勉強やストレスで何度も体調を崩しました。自分のような人を減らせるように受験生の力になりたいです。」 「ファン」→「メッセージ」で相談乗ります❗️ 連絡ください🙆‍♂️ ※現在指導は募集していません

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(2)

セナ
7/8 13:22
ゆうやさん、本当にありがとうございました!!とてもわかりやすくて無事解決しました🥹
yuyaのプロフィール画像
yuya
7/8 16:12
お!じゃあ大小関係のところは難なくクリアした感じですね🙆‍♂️ 今回みたいに問題を解いている時、ただ答えを鵜呑みにするのではなくて疑問を持てるのは凄く良いことですし素晴らしい能力なので大切にしてくださいね!

よく一緒に読まれている人気の回答

数学の解法暗記について
 確かに解法暗記は大切です。しかし、それを単純暗記で終わらせてしまっては危険です。京大の整数問題を例に見ていきましょう。 「n^3ー7n+9が素数となるような整数nを全て求めよ。」(2018)  この問題は、整数kを用いて、nを3k、3k+1、3kー1とに場合分けして考えればすぐ解けます。しかし、この解法を単純に暗記しても、どこからこの解法を導く着想を得たのかが分からなければ、同じ解法を使う問題に対峙してもそれを見抜くことは困難です。この問題では、n=1を仮に入れてみると、値は3で素数です。次に、n=2を入れてみた場合、こちらも値は3で素数です。n=3の場合は15で素数ではない、n=4の場合は45で素数ではない、n=5の場合は99で素数ではない……。ここで何か気づくでしょう。すなわち、実験して得られた値は全て3の倍数になっていることに気づくはずです。となれば、与式の取りうる値は全部3の倍数なんじゃないか?という疑いが生じるでしょう。この仮説を確かめるために、まずはすべてのnに対し与式の値は必ず3の倍数になるということを証明すればよいことになり、そのためにnを3で割った余りに注目して場合分けをするという解法に辿り着くわけです(したがって、modを使えばもっと楽な計算で証明できます)。(i)n=3kの場合は言うまでもないとして、(ii)n=3k+1の場合、与式は27k^3+27k^2ー12k+3で、(iii)n=3kー1の場合、27k^3ー27k^2ー12k+15で、いずれも3の倍数になります。素数の中で3の倍数は3だけなので、結局この問題は、(与式)=3という方程式を整数nについて解けば良いということになります。    こんな感じで解法を深く見つめていくと、解ける問題も増えていきます。例えば、この問題。 「pが素数ならばp^4+14は素数でないことを示せ。」(2021文系)  p=2のとき値は30、p=3のとき値は95、p=5のとき値は639、p=7のとき値は2415、p=11のとき値は14655……。p=3のとき以外は、いずれも3の倍数です。よって、(i)p=3のときと、(ii)p ≠ 3の時で場合分けをして、(ii)p ≠ 3のときでは、さらに(a)p ≡ 1(mod3)のときと、(b)p ≡ 2(mod3)のときとで場合分けして、p^4+14が素数pに対し常に3の倍数となることを証明し、そのとき取りうる値は3のみであるが、p^4+14はp=2で最小値30であるから、3を取ることはない。したがって、p^4+14は素数ではない、という解決ができるわけです。    また、この問題も。 「素数p, qを用いて、p^q+q^pと表される素数をすべて求めよ。」(2016理系)  pとqの対称性からp≦qとしても一般性は失われないので、この大小関係のもと進めていきます。まず、2数の偶奇が一致するとき、その和は必ず偶数になりますが、pとqはいずれも素数なので、与式の取りうる値は最小でも8(p=2, q=2)であり、値が2となることはありません。このことから、与式の値は奇数であり、そのためにはp=2でなければなりません(片方は偶数でなければならず、p^qが偶数となるのはp=2の場合だけ)。すると、p=2と固定して、qに3、5、7、11……と入れてみればいいわけです。q=3のとき値は17で素数、q=5のとき値は57で素数ではない、q=7のとき値は177で素数ではない、q=11のとき値は2169で素数ではない……。q=3のときを除いて、すべて3の倍数ですね。しかし、この問題では、安易にqを3で割った余りで場合分けしてもうまくいきません。場合分けにさらなる工夫が必要になりますが、そこは自力でやってみましょう。  上の問題は、いずれも同じところから解法の着想を得ていることがわかったと思います。と同時に、個別の問題にだけ通用するような覚え方をしても、似た問題ですら手が止まってしまうということも。やはり何事も、勉強というからには自分の頭で考えなければなりません。ただ単に、与えられた結果の知識や表現を覚えるだけではダメですね。その点、受験勉強は大変なものですが、そういったことも志望校という目標に向かって一途に続けられる人こそ、本番で勝っていく人たちなのでしょう。私も偉そうなことは言えませんがね。
北海道大学法学部 たけなわ
14
7
理系数学
理系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
36
8
文系数学
文系数学カテゴリの画像
センター数学
センター試験の集合は、実数の集合を扱うことが多いため、数直線上に図示するのが有効なことが多いです。 目盛の間隔を正確に図示する必要はなく、それぞれの端の大小と、黒丸白丸があっているかが重要です。(黒丸の場合はその点を含む、白丸の時はその点を含まないことを表します。不等号に=が入っているかどうかの違いとも言えます。) 例えば、 p: x>1 q:x≦2 のように与えられていた時、右向きの数直線上に左から1と2の点を書きます。 pについては、x>1(つまり「xは1より大きい」)であることから、先ほど書いた1の点に白丸を書き、そこから右上がりに少し直線を書き、そこから右向きに直線を伸ばします。新幹線のような形になります。この形は、1の点を含まないことを表すもので、白丸と同じ意味ですが、ぱっと見で分かるように両方使います。また、この線がpであることをどこかに書いておいてください。 qについては、x≦2(つまり「xは2以下」)であるので、2の点に黒丸を書き、そこから真下に少し直線を書き、左向きの直線を伸ばします。こちらは、電車のような形になります。この形は、2を含むことを表すもので、黒丸と同じ意味です。こちらの線にも、qであることを書いておいてください。 このように、範囲を一つ一つ図示していくと、次のようになります。 _______________ p / 2 ---------○-----●------->x 1 | q --------------- これを見れば、「pかつq」や、「pまたはq」「p⇒q は真か偽か」はすぐに分かるはずです。たとえば「pかつq」なら、pとqが重なっているところなので、1<x≦2になります。「pまたはq」ならば、pとqの少なくともどちらかがある範囲なので、xは全ての実数になりますね。「p⇒qは真か偽か」については、pの中にqが含まれていないので、pならばqとはいえません。よって、偽となります。 上図の縦棒や斜め棒の長さを条件ごとに変えれば、一つの数直線にもっとたくさんの条件を書き込めます。そのようにして、一つの数直線に与えられた条件全てについて書いておくと、かなり簡単になると思います。 また、「(pかつq)または(rの否定)」といわれたときは、pとqとrとは別に、「pかつq」や「rの否定」についても書くと、分かりやすくなります。 加えて、たまに、条件式をそのまま使うと面倒くさいことがあります。そういう場合は、対偶を取るのが良いです。(そこまで多くはないし、絶対になければ解けないわけではないため、これ以後ついては忘れても大丈夫です) 「p⇒q」と、「(qの否定)⇒(pの否定)」(対偶)は同じ意味です。また、[(aかつb)の否定]と[(aの否定)または(bの否定)]は同じ意味です(ド・モルガンの法則)。これらをつかうことで、 ・「または」を「かつ」に変換できる ・aやbの代わりにaの否定やbの否定を使える という利点があります。このような利点が使えそう!と思ったら使ってみてください(とりあえずわかんなかったら対偶とってみる、っていうのも一つの手ではあります)。 ※(rの否定)などは、本来はrの上に横棒を書いて表します 至らないところもあったかもしれませんが、貴方の合格を願っています。それでは。
早稲田大学先進理工学部 ROX
19
0
文系数学
文系数学カテゴリの画像
今から数学の偏差値を10あげることは可能なのか
 1.問題の考え方がしっかり身についているか確認  2.身に付けた考え方を応用問題に反映さへる練習 の2つを順にしっかり行うと良いです。おそらく数はこなしていると思うので、問題に対する考え方がちゃんとできているかどうか確認するだけで確実に点数は伸びます。大丈夫です。 まず、青チャートの全ての例題の問題の解き方が口頭で言えるかどうか確認してみてください。大事なことは各問題の筋道が見えるかどうかを確認することなので、あまり計算はせずに、時間をかけずに口頭で確認した方が良いです(確率や帰納法を使った証明など、ある程度計算しないと筋道が見えない問題は計算して大丈夫です)。たとえば、  ・ある複素数の問題→図形的な処理が必要&複素数のn乗の計算が出てくるので、z=A(cosθ+sinθ)と置いて解き進める  ・ある積分の計算問題→置換積分でルートを外す  ・ある数列の問題→階差数列に変形して一般項を求めた後、元の数列の一般項を求める  ・ある関数の問題→xの二次の係数がaなので、aの値を±, 0で場合分けして考える などのように簡単に確認すると良いです。このとき、理解度ごとに問題番号の上に印を付けると良いです。たとえば、  論理的に考え方が言えた→☆  考え方が言えた→◯  考え方を説明できないけど解けそう→⬜︎  全くわからない→× という具合です。 ×がついた問題は、もう一度解き直し&考え方の習得を図りましょう。 ⬜︎がついた問題は、ペーパー上の手グセによって解けているだけですので、しっかりと考え方を身につけましょう。 ◯がついた問題は、なぜその考え方になるのか、基礎知識と結びつけてみましょう。先ほどの一つ目の問題の例で言うならば、  複素数をz=A(cosθ+sinθ)と置いて解いたのはなぜか →複素数の掛け算の図形的意味を捉えやすい&ド・モアブルの定理が使えるから と言う具合です。 こうして、全ての例題が☆あるいは◯になれば、弱点は消えます。 これをするだけで、だいぶ数学の力は上がります。 あとは、今までに受けた模試(今年)の問題, 一対一対応の問題を実際に手を動かして解いてみて、ひたすら身に付けた考え方を反映させる練習をしましょう。問題文を読んで、 「aという条件でbを求めるのであれば、筋道はcという考え方で、その中でdという考え方を使えば良いな」 というように、考え方がクリアに浮かぶことが理想です。わからなかったとしても、解説を見て、使われている考え方は既知のものであることを確認して吸収することが大事です。 また、理科大は数3の微積分で難しめの問題が出ることが多いので、微積の計算演習は特に積むべきです。頑張ってください!
慶應義塾大学理工学部 LiLi
42
3
理系数学
理系数学カテゴリの画像
隣接3項間漸化式
こんにちは、名古屋大学医学部医学科のメイメイといいます。 (an-an-1)=bnとするとb1は求められないですね。 (an+1)-(an)=2[(an)-(an-1)] が出てきているはずですが、 n-1の項があり基本的にn≧2で考えています。 これをn≧1に直してみると (an+2)-(an+1)=2[(an+1)-(an)] となります。 単純にnの部分を1ずつずらしただけです。 この状態で(an+1)-(an)=bn と置いてみましょう。 b1が求められるはずです。(ちなみにb2は必要ないです。) つまり(bn+1)=2(bn)、b1=(a2)-(a1)=8の等比数列に帰着しますね。 これを解くと、bn=8・2^n-1=2^n+2となります。(2^n-1は2のn-1乗という意味です。) すなわち、(an+1)-(an)=2^n+2 両辺を2^n+1で割ると <(an+1)/2^n+1>-(1/2)<(an)/2^n>=2 となります。 (an)/2^nをcnとすると、(cn+1)=(1/2)(cn)+2 これを変形して、(cn+1)-4=(1/2)<(cn)-4> つまり(cn)-4=(-7/2)・(1/2)^n-1=(-7)・(1/2)^n よってcn=4-7・(1/2)^n この両辺に2^nをかけてan=4・2^n-7 (n≧1) となります。 分かりにくくてすいません!
名古屋大学医学部 メイメイ
2
3
理系数学
理系数学カテゴリの画像
センター ユークリッドの互除法の問題について
ユークリッドの互除法は、AとBがあった時に、A÷B=CあまりDだった場合、DとBの最大公約数と、AとBの最大公約数が一致するとかいうやつですよね。一方をもう一方で割って、その余りを使っても一方の数をわるというのを繰り返せばいいだけです。(わかります?たぶん教科書の解説の方が丁寧かと、、、ここだと数式とかうまく書けないので) まず(5Nたす29)÷(Nたす3)=Nあまり14 (Nたす3)と14の最大公約数が7になるには、Nが11だと最大公約数が14になってアウトで、18か4であればよい、という感じではないですか? 本当に、このアプリは数式を書くことに関してはごみ(たとえば「たす」はひょうじすらされない)ので、解答を見たほうがいいと思います。
東京大学文科二類 hgout
2
0
理系数学
理系数学カテゴリの画像
過去問が解けない!
こんにちは! まず北大の冠でA判定が出る地点で、いわゆる基礎は問題ないどころか素晴らしいと思います。 一橋の問題って、どうにもこうにも問題が短すぎて意味わかんないの多いですもんね。 少し僕の話になってしまいますが、僕は理系から経済学部に進んだため一橋の問題も単元の確認で使ってました。 この時に一橋の問題について感じたのは、他大学とは異なり、条件を自分で絞らなければならないという傾向があまりにも強いと言うことです。 A問題は結構条件書いてあったりしますけどね。 あんじさんも薄々気づいているかとは思いますが、文章が短い分、解答に必須な条件は必ずと言っていいほど削ぎ落とされています。その条件を見つけ出すことさえできて仕舞えば、B問題くらいならあんじさんの手にかかればボッコボコに完答できると思います。 じゃあその条件とやらはどうすれば見つかるんだとお思いだと思います。 簡潔にいえば解法を絞らなければふわっと出てきます。 何を言っているんだと言われると少し難しいのですが、あんじさんが基礎完璧だからこそ言えることです。 例えば2005年の京大文系後期の三角比というか三角関数っぽい問題。(調べてみてくださいね) 一橋に似て、問題が圧倒的にキモいです。 ただ、今回の問題では三角関数の公式、和積とか積和を駆使すれば綺麗になります。 そうすると不思議なことに不等式の条件が出てくるんですね。(詳しくはMathmatics Monsterで三角関数のところに同様の問題がありますので見てみてくださいね) このように、不等式→整数問題       sincos→三角関数 というような単調な問題は出ませんので、表面的に分かる情報をこねくりこねくりしてなんとか不等式などの情報を編み出す必要があります。 長々と何を言っているんだとお思いでしょうか? やることはわかっているのだからあとは場数を踏むしかないということです。正直数学で点数を稼ぐのはおすすめできません。手の出ないようなB.Cの問題でも、一旦30分-60分くらい考えてこねくり回して、無理なら模範解答を見る。出来なくて不安なのは痛いくらいよく分かりますが、そういうものです。できる方がおかしいくらいの気持ちでいいと思います。 過去問は、複数回解くことでその大学の傾向を肌で覚えることを可能にし、気付きにくいでしょうけど合格への距離を相当近くしてくれます。なので解けないことにビビらず、どんどん解きましょう。そしてひたすらに解き直し、再現を何度もしましょう。これで基本はどうとでもなります。 なかなか難しく厳しい受験勉強、約半年後ある合格発表であんじさんが笑顔を浮かべられるよう、心からお祈りしています。
東北大学経済学部 こう
1
2
文系数学
文系数学カテゴリの画像
三角関数の変形の使い分けについて
質問者様は高2ということなので、数Ⅱまでの範囲で回答させていただきます。 【三角関数を変形する目的】 まず、三角関数を変形するのは必ず目的があります。 ①三角関数を含んだ方程式・不等式を解くため ②三角関数を含んだ関数の最大値・最小値を求めるため などがよくある目的ですね。 《①について》 方程式や不等式ははじめに因数分解で攻めます。 (因数)(因数)=0 といった形になれば、あとは簡単ですね。 因数分解しない場合は②の考え方をそのまま借りましょう 《②について》 sinのみ、cosのみ、tanのみ、の式に帰着させます。そしたら見たことある関数(一次関数、二次関数など)になります。 そのための手段として *三角関数の相互関係 *加法定理を用いた公式 などが存在します。 --------- 【質問主様の弱点と思われるところ】 数Ⅱの三角関数に入ってからうまくいかなくなった高校生は加法定理を用いた公式につまづいている人が多いです。 公式自体覚えていても、問題でうまく活用出来ないことがよくあります。 先程の項目で書きました、変形のそもそもの目的を意識して演習してみてください。 使い分けパターンは青チャートなどのテキストに詳しく記載されています。これを身につけることが大切です。 パターンを繰り返しの演習で身につける際に、 「因数分解を目指す!」 「sinのみ、cosのみ、tanのみの式を目指す!」 という意識を持って取り組むことで、何故その式変形を使うのかが体感出来ます。 --------- 【最後に】 問題のゴールから逆算して考えることが数学においては大切です。 初めから逆算して考えることなんて出来ないから、パターンを演習によって身につけるわけですが、ゴールを意識してパターンを身につけなければ、何のためのパターンなのかがわかりません。 必ず、式変形の目的を意識した演習を心掛けてください。
京都大学工学部 クウルス
26
2
理系数学
理系数学カテゴリの画像
標準、発展問題の解き方
普遍的なことだけを説明しても中々伝わりづらいと思うので、具体的に問題を1問出しながら説明させてください! まず前提として、応用の問題が解けるようになるためには以下のことが必要になります。(結論です) ・基本的な解法がすぐに出てくるようにする ・問題を見た時、前の問題との関連性から考えていく ・誘導に乗っていくのに慣れるのにはとにかく演習量が必要 1つ目は恐らく大丈夫だと思います。また、3つ目もこれから2次試験向けの演習を重ねるうちに「あの時の誘導に似てるなー」というような感覚で段々できるようになってくるものです。つまりは慣れです。自分自身もこれを強く感じています。最初は中々誘導に乗れず辛いかもしれませんが、まずは量をこなしましょう。 おそらく問題は2つ目です。 これは分かりやすく言うと、「こうやってやっていって…あ、(1)(2)ここで使う?」という考え方ではなく、「(1)や(2)の問題の考え方を上手く使えないかな〜」「今までやったことのある基本問題の考え方が何か使えないかな〜、あ、文章のこの部分前にやったあの問題文と似てるな〜」と言ったような、初めから誘導や基本問題などのヒントの方から答えを探っていくように考えていくことです(長くてごめんなさい)。 実際に問題を見て考えていきましょう!以下は2015年の九大の問題です。 以下の問いに答えよ。 (1)nが正の偶数のとき、2^n-1は3の倍数であることを示せ。 (2)pを素数とし、kを0以上の整数とする。2^(p-1)-1=p^kを満たすp,kの組を全て求めよ。 (※^の後は指数を表します。2^n-1は2のn乗-1、2^(p-1)-1は2のp-1乗-1です) (1)は割愛しますが、n=2l(lは自然数)とかと置いて二項定理で分解して3で括ったり、帰納法を使えばいいと思います。とにかく2^n-1が3の倍数だと分かればいいです。 問題は(2)ですね。先程言った通り、誘導を上手く使えないかという点からとにかく問題を見ましょう! まず見るべき点は式の形が左辺と似ている所です。誘導が使えそうですよね。 誘導を上手く使うコツですが、「誘導の部分と問題文の該当部分の違いを上手く見分けること」です。今回であればnがp-1に変わっています。また、(1)でnは"正の偶数"でしたが、p-1は"素数-1"ですよね。 ここの違いは何かあるでしょうか?? まず整数問題で素数が出たら、「2とそれ以外」という見方をするのは演習量をこなせば分かってきます。素数の中でも2だけ偶数で稀有、と認識できていればOKです。(ここは基本問題的な解法暗記の部分) 素数-1は、素数が2のときだけ奇数、素数が2以外のときは偶数になりますよね! ですので、2か2じゃない素数かで分けます。2じゃない素数のときは(1)の条件と一致するので使えそうですよね。まずは使いましょう! ○pが2以外の素数のとき (1)より左辺は3の倍数です。ということは右辺も3の倍数になります。p^k、つまり素数の累乗が3の倍数ということはpは3以外ありえないですよね。ここは素数ならではです。 ですのでp=3から左辺に代入するとk=1と決まります。 ○pが2のとき 代入していくとk=0になりますね。 以上から(p,k)=(3,1),(2,0)となりました! このように、「基本問題の解法はすぐに出ておくようにする」「誘導から常に考えていく(誘導と問題文の違いを認識し、見分けていく)」ことの重要性がわかったと思います。また、基本問題というのは、教科書や青チャートにある典型問題もそうですが、素数は2とそれ以外に分ける、といったような"応用問題でよく出てくるテクニック"もそうです!これは演習量を詰まないと中々インプットされないので、「演習量が大切」なのも再認識できるでしょう。 また、1問に時間をかけて思考していくこともとても大切です!最終的にその標準問題の解き方を覚えられると役には立ちますが、思考力というのは思考する時間を取らないと中々伸びません。1問に10分は考える時間を取りましょう! めちゃくちゃ長くなって申し訳ないですが、参考になれば幸いです!!
九州大学経済学部 riku
10
3
理系数学
理系数学カテゴリの画像
センター数学
一問目から解けないという場合は、基礎がしっかりできていないのだと思います。もう一度、教科書を読み直してみたりするといいと思います。 図形問題に関しては、いくつか分野があるので、公式や解き方を一度整理してみましょう。 例えば、円が出てきたら、接弦定理を使うのか内接外接を使うのか、それとも内心や外心の性質が使えるのか… 一つずつ公式に当てはめて解いてみることで、解けるようになります。 指数関数や対数関数は、苦手な方が多いですよね… まずは、問題に慣れることから始めましょう。 底の変換に常用対数、グラフや真数条件、やることがたくさんあって混乱してしまいそうですが、問題集等で一つずつを丁寧にやっていくと、自然とセンターで解けるようになります。 数列も年によっては難しすぎる問題も出てきます。怯える必要はないと思いますが、解けるようになっておくと安心です。 問題が、等差数列なのか等比数列なのか階差数列なのか、法則性は何なのか、何を数列として考えているのか。たくさんのことを聞いてきますが、一つずつ整理して、考えすぎないように解くのが大切です。 それぞれの分野について、簡単に説明しましたが、どの分野にも共通して言えるのは、基本的な公式は使えるようにしておこう。です。自分の知ってる公式の中に解くのに必要なものが無ければその問題は解けません。しっかりと使えるようにしましょう。 是非参考になればと思います。
大阪大学基礎工学部 tomato-juice
5
0
文系数学
文系数学カテゴリの画像