UniLink WebToAppバナー画像

極める分野を絞るのは良いか

クリップ(2) コメント(0)
9/24 18:05
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

ぽん

高3 岐阜県 千葉大学工学部(60)志望

第一志望校の数学の過去問を7〜8年分見たところ、 確率・図形と計量・ベクトル・数列・図形と方程式・複素数平面・微積・楕円とかが少し という感じでした。 この中でも確率・図形・微積は毎年出ているのでその分野から先に対策していこうと思うのですが、他の分野についてはどのような優先順位で勉強するのがいいと思われますか? また、今は一対一対応を使って勉強しているのですが、過去問を見る限り出題されていない分野(整数・三角関数や指数対数)についても同様に一対一で勉強した方がいいのでしょうか 出題されていない分野を深く勉強する気にならず、学校で使っているメジアンという問題集をやっていればいいや、共通テストレベルまででいいやと思ってしまいます。

回答

Yu

京都大学医学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
過去問で出題されている中だと、数列や複素数平面は典型問題が多く、演習が結果に結びつきやすいと思います。 ですが、出題されている他の分野や出題されていない分野に関しても勉強しておいた方がいいと思います。問題に対するアプローチの数を増やすことにもなりますし、なにより、出題される可能性が0では無いからです。 三角関数単体や指数関数単体で出題されることは、なかなか無いですが、他分野と融合されることは多いのでやっておいて損はありません。 また、整数はどれだけ問題に触れたかが大事になったりするので、一対一対応の演習程度は少なくとも解いておいた方がいいでしょう。

Yu

京都大学医学部

143
ファン
12.1
平均クリップ
4.7
平均評価

プロフィール

京都大学医学部医学科 独学で現役合格 センター879/900 京大オープン2次全国2位総合全国1位(オープン、実戦のいずれも冊子掲載)、生物はオープンおよび実戦で全国1位3度 英語は実戦で全国1位 全国模試等は常に1桁〜20位前後 生物オリンピック銅賞獲得 生物、数学、英語が得意ですが、その他科目の参考書や勉強法などについても自信を持ってお答えできます。 家庭教師先募集中です。

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

慶應義塾大学の数学
結論から言うとやった方がいいです。理由は大きく分けて2つあります。 1つ目は、単純に出てもおかしくないからです。自分の経験として、過去25年間出ていなかった範囲が本番に出てパニックになったことがあります。その問題は教科書レベルだったので、ちゃんとやっていたらラッキー問題でした。ましてや、今年は色々変化がある年ですから1問くらい全く違う問題が出てもおかしくありません。もし、三角関数などの問題が出た場合、周りのライバルは国立のために対策しているため、余裕で解いてくる可能性が高いです。そのとき、自分だけ対策していなかったら、かなり合格から遠ざかります。 2つ目は、複合問題として出る場合があるからです。特に、三角関数はベクトルの問題などと併せて出題されるケースがよくあります。三角関数を使えれば、半分の時間で解けたのに…なんてこともありますので、全範囲ある程度は抑えておくべきだと思います。 ただ、頻出範囲が出る可能性が高いのは事実なので、同じくらいの割合でその他範囲をやる必要はないです。 0にはせず、基本問題レベルは解けるようにしておくのがベターかもしれません。
慶應義塾大学経済学部 T
7
2
文系数学
文系数学カテゴリの画像
整数、確率の対策の時期は
【分野別対策に関して】 標準問題精講を完璧にして、別の参考書に行くというのは無理だと思います。 ひと通り終えているのなら、弱点補強を目的として別の問題集に取り組むのは全然ありです。 「基本を完璧にしてから応用」 という考え方はもっともらしいのですが、実際は応用に取り組みつつ何度も基本に戻って考えるというスタイルがいいでしょう。 別の問題集で間違えたところを標準問題精講と照らし合わせてやると良いです。 ------------ 【分野別対策の時期に関して】 分野別にはこの対策!というのは、個人的にはありませんでした。 センター試験に特化した対策を年明けからやっていた、くらいでしょうか。 それまでは、難度の高い問題集や模試の復習と、高校3年間で使ってきた青チャートと4STEPを行き来しながら、弱点補強と論理構築練習を繰り返しました。 ------------ 【その他思ったこと】 確率や整数が苦手な方は、ベン図をはじめとした集合の考え方がうまく使えない印象です。 図や表を用いて確率や整数の解法を友人に説明できるかどうかを試してみましょう。 模試の復習を通じてやると良いです。
京都大学工学部 クウルス
33
2
文系数学
文系数学カテゴリの画像
センター数学1A大問選択 捨てる分野があっていいのか
こんにちは!東工大一年のたまちゃんです。 質問者様は数学はセンター試験でのみ使うということでしょうか? もしそうならば、あまりオススメはしませんが、捨てちゃうのもありだと思います。 私は図形問題は捨てていました。確率、整数で受けました。ただ、センター試験の確率は計算は少し面倒な事もありますが、基本的にはあまり難しくないと個人的には思います。また、チャートの問題の方が難しいため、チャートの問題が解けるなら、センター試験の確率は解けないとおかしいです。 答えを全く見ずに、解けるところまで行けば余裕で満点くると思います。 図形問題の怖いところは方針が少し思いつきにくいところだと思います。私は苦手でした。 ただ、2次試験で数学を使わないのであれば、捨てても良いかと思います。 2次試験で数学を使うなら、おそらく確率は必要であると思いますので、センタより上のレベルに持って行く必要がありますが… 確率は個人的に特殊な分野だと思っていて、数学が得意な人でも確率だけは苦手な人も割といます。なので、強制はいたしません。 整数と図形が得意なのであれば、そこを伸ばしていけば良いと思います。 長文失礼しました。
東京工業大学第三類 たまちゃん
5
1
文系数学
文系数学カテゴリの画像
残り3週間の数学
解法の幅を広げたいなら、実際に解くことはせずに、多くの問題に触れて、どーいう解法でやるか戦略を立ててみることだけをやるやり方があります。 それで、しっかり解説はみて、詰まってしまいそうなところをしっかりチェックしておくことをやれば、解法の幅がでてくるとは思います。もちろん、実際に解いた方が良いですが、ほんとにたくさんの量に触れたいならこのやり方もありです。 自分ができる解法を色んな形でまとめてみるってのもあります。 例えば、「垂直」って言われたら何が思い浮かべますか? 円の直径をもつ三角形、sin・cos、法線ベクトル、 座標面の傾き-1、など色々あげられますよね。 こーいう風にあげていくことで、実際の試験で、柔軟な対応ができてくると思います。 あとは、「数列の和」「最小値・最大値の求め方」なんかはまとめがいあると思います。 また、過去問やるのは、おそらく思ってるよりも効率いいですよ。傾向を知れるのもそうですが、慶應が好きな解法を知れるのがでかいです。先ほどのように、慶経・SFCの好きそうな解法をまとめておくのもありです。それと、慶経は誘導ついてあるんで、しっかり誘導に乗る実力も大事になってきます。過去問だとそこも練習できますよね。 どっちつかずになってしまいましたが、個人的には過去問推奨派です。上記のこと参考にしてみてください。 元も子もないこというと、数学は、ここまできたら、本番の試験でできるかどうかなんですよね😅 いや、自分ができる問題が出題されるかってところでしょうか? めっちゃ数学が得意で、常に凄い点数叩き出せる人以外は、全然できなくて、凄い低い点数取ってしまう可能性充分あります。でも、その逆も然りで、できる問題めっちゃでで、高得点取れる可能性もあります。 実際、自分が一橋の過去問で1番の点数取ったのは、1番最初にやった時でした笑笑 5問中4完半とかいうバケモンみたいな正解率でしたね笑笑 でもそこからは、1〜2問完答できたらいい方で、1個もあてないこともざらでした。本番は3完半々と健闘はしました。 要は、他の科目より、運要素が強いと思います😅 なんとか、自分の得意なところがでるように祈ってることも大事かもしれません!笑笑
慶應義塾大学商学部 タイ
2
0
文系数学
文系数学カテゴリの画像
計算練習した方がいい分野
こんにちは。勉強お疲れ様です。 「計算練習」をひたすらにやれ!という分野であれば、間違いなく微分積分です。ですが、私が次に推したいのは実は「複素平面」の練習なのです…。 微分積分について 理系の受験数学で、出ないことはない!と言い張れるくらいにはめっちゃ出ます。ほんとうに。 必ず出る分野ならば、そこは「早く解く」ことができて、さらに「確実に正解する」ことができることが大事ですよね。「早く解く」、「確実に正解する」ともなれば、それに必要なのは計算練習です。微分、積分の練習については以下に記す通りにやるのがオススメです。 微分の練習 ①時間制限を設けて、スラスラ微分する。 (現時点の自分の全速力でかかった時間×0.8で設定してみてください。間に合うまで頑張りましょう。) ②微分後(導関数)の形を覚えてしまう。 (積分でめっちゃ役に立つんです。「微分形の接触(f(g)g'の形)」の際に、「これ、gの微分形じゃん!」ってすぐに見抜けるようになるのです。) 積分の練習 ☆手を動かす前に頭で考える。 (適当に手を動かすのは練習になりません。「この積分は、どの解法で解くのかな…?」「これだ!これならいける!」ってなるまでは手を動かしてはいけません。) 呼吸をするように積分しましょう! (そのために微分の練習が不可欠です。) 複素平面について 実は受験で出たら確実に解けるランキング第1位なんじゃないか?って思っています。複素数の解き方には数パターンしかないんです。出題のされ方もパターン化され切っています。「あ〜こういう系ね。」と分かるくらいまで練習していれば、確実に大問1個分正解できてしまうんです。 「青チャートが一対一になっていて演習量に不満がある」ということでしたが、複素平面に関しては安心してください。青チャートに載っていない解法の問題はおそらく出ません。青チャートの複素平面の問題を全て完璧に解けるように何周も練習することもオススメします! 受験勉強って結構モチベ保つのしんどいですよね。好きなお菓子食べたりするといいですよ。それと、数学に飽きたらほかの勉強しちゃっていいですよ。ほかの勉強が飽きた後に数学に帰ってくればいいんです。 数学の問題集にもいずれ飽きが来ると思います。そうなったら1度過去問に手をつけてみましょう。(〇進の過去問データベースおすすめ!) 過去問演習が1番数学の中で楽しいですよ!
慶應義塾大学理工学部 数学の都
11
3
理系数学
理系数学カテゴリの画像
私立医学部(御三家+順天堂)に頻出な数学単元は?
質問者さんの言う通り微積や確率はかなり頻出ですね、慶医は確率漸化式が毎年出題されていたりと、頻出分野の融合もよくあります。 図形と方程式や整数ですが、御三家は出題されると思います。図形と方程式というよりは図形問題の解き方が難しいイメージなので、図形全般に対応できるようにしておくといいです。また、整数ですが、解き方を知っているかどうかでかなり分かれるので、YouTubeなどを利用して様々なパターンを抑えられておくといいです。1度目を通して置くだけでも違うと思います。 質問者さんが言うような頻出分野と、図形、整数も対策しておくといいでしょう。三角関数とかもよく出るので典型的な解き方は見返しておくといいです。
九州大学経済学部 riku
1
0
理系数学
理系数学カテゴリの画像
阪大理系数学の勉強
結論、これから進めるべき順序は以下の通りです。 ①核心の星1、2(3は得意でない限り多分しんどい) ②阪大過去問2年以上(特に頻出分野は入念に) ③本番のOP・実践とその復習 ④阪大過去問10年分くらいを2周 入試問題の核心の問題チョイスはかなりいいですし、一冊で数Ⅲまで網羅できるのでオススメですが、解答の思考の流れに違和感を持つことがあったので、注意してください。(解答通りの解法でなくて良い。数学センスのある人に質問できると良し) 星3はかなり難しい(正直解けなくても構わない)ので、まず星1、2あたりから始めることをオススメします。 難関編を解いたことはありませんが、正直必要ないと思います。 あくまで、全単元の復習&初見力向上&パターン化が目的という認識で大丈夫です。 入試問題の核心に入る時期もかなり遅めなので、実践模試の過去問は、まず必要ないと思います。 ただ、試験に使った5時間が無駄になるので、本番のOP実戦の復習はしてください。 過去問も同様ですが、復習する際は、どういう力が足りないのか、過去に学んだ知識がどう使われているのかをきちんと分析してください。 普段の勉強の復習法は、 ①自力で解く ②解答チラ見 ③もう少し自力で解く ④解答を見て、初見の段階でどう考えていれば正解できていたのか考える ⑤④の内容を抽象化してメモする ⑥解き方とそれを思い付いた理由を空で言えるようにする ⑦頻繁に自分のメモを見返す ⑧期間をおいて⑥をする こんな流れです。 メモするのは面倒ですが、復習する際 結果的に時短になるのでオススメです。(僕の場合、計算ミスを減らすためその原因と対策もメモして、何度も見返していました) 僕の分析では、阪大は以下の問題が頻出です。 ①体積の問題 ②複素数平面+α(特に回転) ③微分・積分を絡めた不等式+極限 ④確率・漸化式+極限 ⑤気持ち悪い整数問題(対策困難で捨て問になることが多い)or任意の単元から一題 特に複素数は広い概念を持ち、色々な分野との複合問題が作りやすいので、ほぼ100%出ると思っていいです。 あと、体積問題の本質は軌跡と領域で、特に一文字固定法と相性が良いので、よく勉強しておいてください。 不等式は大-小して微分したり、グラフ的に考えたりすれば、どうにかなります。(類似問題をたくさん解くべき) 阪大は出る単元がほぼ決まっていますし、細かい知識はあまり問われないので、きちんと対策すれば半分以上は取れます。 受験生は、マニアックな知識が必要だと考えがちですが、大学が求める人材や公平性を考慮すると、それを問うことにメリットがありません。(これを理解した上で解くと、思考にノイズが入りにくいです) 「その問題のみで使える知識」に意味はありませんから、「本番でも使える知識」だけを抽出して学び取るよう意識してください。(そのための抽象化です) 残り時間は少ないですが、正しい受験理論をお持ちだと思うので、自信を持って頑張ってください。
大阪大学工学部 atom
26
5
理系数学
理系数学カテゴリの画像
場合の数・確率がどうしてもできません
苦手分野だからといって、捨てることはあまりオススメしません。 残り時間が少ないから、限られた勉強時間でとれる得点を上げるために…と考えたくなるのはよくわかります。選択問題では苦手分野を回避できますが、2次試験では全員に同じ問題が課されます。たとえば、基礎レベルの確率分野の問題でるかもしれません。難易度が高くないなら正答率は高くなるでしょう。ですが、苦手分野だからといって捨てれば、周りとかなり差をつけられてしまいます。ですので、苦手分野であれど、苦手なりに対策しておくことが大切になってくると思います。 たとえばセンターの選択問題で、時間を測るときは図形を選ぶが、あとで確率分野も解いてみる。青チャート等の問題を全て解くのは厳しいけど、このレベルまでは解けるようにしておく。など、苦手なりではあるけれど、対策をしてほしいと思います。少しでもやっときゃよかった…と後悔してるときには遅いので… 残りの期間、頑張ってください。
京都大学教育学部 Lica
5
0
文系数学
文系数学カテゴリの画像
共テ数学半分とるには
個人的な意見ですが、整数と場合の数が比較的できるということは数学自体が苦手だとは思えません。これを踏まえて、時間配分、勉強法のアドバイスをさせていただきます。 まず、時間配分についてですが、取れるところから取ることが基本だと思います。もちろん大問1から始めて間に合うならばいいのですが、間に合わない場合は自分のできるところから取り組んだほうがいいです。 ぐみさんの場合、1Aは整数と確率を初めにやったほうがいいと思います。まずはどんな問題が来ても各12分前後で解き切ることを目標にしましょう。 2Bは得意単元がないようなので、時間配分については何とも言えません。 次に勉強法です。 整数と場合の数が得意なのなら、おそらく数列は理解できると思います。だからまずは教科書で数列の基本的なパターン(nの式で表された漸化式、等差、等比の一般項、その和の求め方など)を覚えたほうがいいと思います。 苦手な単元についてですが、三角関数、指数関数は共通テストでもおそらく狙われるため早急に行ったほうがいいです。まずは教科書の問題を用いて、グラフを用いた解き方をするといいと思います。現にセンター試験ではグラフを用いて解くように誘導することがよくあり、数式を見える形にする訓練は必要です。 あと、三角関数、指数関数が苦手だというよりもしかしたら二次関数が苦手なのかもしれません。三角関数、指数関数、対数関数などの関数系は結局二次関数や不等式の問題に帰着することが多々あります。 文字が入った二次関数の最大最小を求める際に、なぜ軸で場合分けするのか、f(0)が正であることを用いるのか、その意味が分かりますか?グラフで考えると当たり前ですが、式だけでは伝わらないことがあります。 参考書を一周するのはもちろん素晴らしいことで、継続する力は本当に尊敬しますが、それよりも教科書をもう一度見直したほうが良いです。教科書の章末問題は一瞬で解法が浮かぶくらいがちょうど良いです。そこから少しずつ応用問題にチャレンジしてどの解法が基礎になっているのかを考えることが大切です。 とても大きな質問だったので、具体的には回答できなかったかと思います。また何かあったら何でも聞いてください
九州大学農学部 まき
17
7
文系数学
文系数学カテゴリの画像
共通テスト数学Aで山張っていいのか
こんにちは。 解く問題を固定することは、確かに共テ数学に関して言えば有効な手段といえますが、過去問を通していくうちに特定の分野が異常に難しい/簡単な年が出てくると思います。 そういった場合ではヤマを張り予定していた問題を解き進めるより、思い切って問題を変えてしまう方が結果としていい点数になる場合があります。 私個人の感覚だと、確率はどうしても計算が合わない時があったり、問題の性質上自分の出した答えが正解のように見えてしまったりするので穴埋めを解く上であまりおすすめできません。 整数は二次試験でも出題が非常に多いので、(これに関しては確率も同じですが)実際に解くかどうかに限らず問題に触れてみるべきだと考えます。 北大は共テの割合も高いので大変ですが、文系における数学は大きくリードを奪える科目でもあるので頑張ってください。
東北大学経済学部 こう
2
2
文系数学
文系数学カテゴリの画像