3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],""] 7:I[231,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],""] 8:I[212,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"default"] f:I[490,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"GoogleAnalytics"] 4:["id","XluOkWMBp00JfyF5pONv","d"] 0:["r_E0tpHHdAzMG78fqwzpT",[[["",{"children":["advice",{"children":[["id","XluOkWMBp00JfyF5pONv","d"],{"children":["__PAGE__?{\"id\":\"XluOkWMBp00JfyF5pONv\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["advice",{"children":[["id","XluOkWMBp00JfyF5pONv","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","body",null,{"className":"__className_36bd41","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/830a58250615b22c.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"三角関数の変形の使い分けについて | UniLink"}],["$","meta","3",{"name":"description","content":"三角関数の変形で、sin2乗やcos2乗を半角の公式を利用して次数下げをしたり、sinθ cosθ=tと置いて式を簡単にしたり、和積の公式を使って因数分解しやすくしたり、sin2乗 cos2乗=1と置き換えたり、様々な変形がありますが、これらはどのように使い分け、どんな問題の時にどの変形を使うかが上手く見極められません。見分ける方法があれば教えて下さい。m(_ _)m"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3903,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"ClientInfo"] 14:I[2798,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdUnderConsultation"] 15:I[2582,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdviserInfo"] 16:I[7060,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdUnderAdvice"] 17:I[3194,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"CommentPostButton"] 18:I[6411,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"CommentItemAvatar"] 19:I[6549,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"CommentItemName"] 1a:I[3866,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdOnAdviceList1"] 1d:I[3866,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdOnAdviceList2"] 20:I[3866,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdOnAdviceList3"] 1b:T2634,(Ⅰ)勉強時間と休憩時間のバランス  勉強時間と休憩時間のバランスはそれで良いと思います。一般には、25分間の勉強と5分間の休憩を繰り返すポモドーロ・テクニックが集中力の維持には良いと言われています。しかし、実際に勉強してればよく感じることですが、25分ってすごい短いんですよね。その短さゆえに、途中で途切れてしまう勉強の続きを早くやりたいと言う思いが掻き立てられ、それがやる気や集中の維持に繋がるのだそうですが、そんな短い感覚でいちいち休憩を挟むのは煩わしいと感じもするわけで、そうなるともう個人の好みによると思います。今のバランスで全然問題ないと思います。  勉強と休憩のバランスはそれでまぁ良いんですが、勉強時間の三分の一を数学が占めていることは少し気になりました。一橋となると、二次試験でも4教科で、しかも社会の難易度が鬼らしいですね。これに加え、共通テストもありますから、むろん優先度というものはあるとはいえ、科目毎の勉強時間のバランスは大丈夫なのかな?と少し心配です。何かご自身でお考えがあるのでしたら、それで良いのですが。 (Ⅱ)休憩の取り方  私はよく外に出て散歩していました。イヤホンで好きな曲を聴きながら、塾の周辺をぐるっと一周して、また自習室に戻り、勉強再開です。まぁ、それも頻繁にやっていたのは高2の頃で、高3になると、どうしても集中が切れてしまったという時はやっていましたが、それ以外は尿意を催してはばかりに行くことが休憩の代わりになっていた記憶があります。相談者様は有料の自習室ということで、外に出るのは難しい場合は天井を見つめて何も考えない時間を数分作るというだけでも結構良い休憩になると思います。適度に気分転換ができれば何でも良いと思います。 (Ⅲ)おすすめの参考書とその性質  最難関レベルの問題集では、旺文社の上級問題精講を私は使っていました。部活の先輩(学年で五指には入る。現役で阪大に行きました)が使っていたことと、実際に書店で色々見比べて「やりたい」と思ったものだったことが主な理由です。解説が非常に詳しく、また平易であることが特徴です。類題も豊富に40問ほどあって、メインの問題だけでは物足りない方はこれをやると良いでしょう(そもそもメインの難易度が高いので、そんな猛者は少ないでしょうが)。一橋の数学は文系最難関ですから、最終的にはこのレベルの問題集を目指して勉強していけば良いんじゃないでしょうか。  参考書に関して一つ気になったのが、網羅系(黄チャート)をやった上で河合塾の重要事項完全習得編をやる必要があるのかということです。もちろん、絶対にやるなとは言わないし、やれるならやったほうが基礎の定着はより確実になるだろうとは私も思います。しかし、黄チャートの難易度レベルと網羅系参考書であるという性質上、学習内容が重要事項完全習得編と被りはしないか、という懸念もあります。もし難易度レベルが同じであるならば、重要事項完全習得編ではなく実戦力向上編の方で、一、二段階ほどレベルの高い問題に触れた方が良いのではないかと思いました。これも、オンライン塾の先生から勧められたとか、ご自身でお考えあっての選択だと言うならそれで良いですが。 (Ⅳ)計画を立てる上での留意点・アドバイス  前に一度別の回答で書いたことですが、あまり具体的すぎる計画やスケジュールは立てないようにした方がいいと思います。計画の立て方としては、①まず自分の得手不得手を分析し、②苦手をなくす方向で、いつまでにどの苦手分野を克服したいかという小さな目標を各所で立てていく、というのがシンプルで良いと思います。詳しくは「ビリギャルのように」という相談に対する私の回答(3)に書いてありますので、もし知りたいならそちらを読んで頂ければ詳細を知れます。 (Ⅴ)習慣付けるためのアドバイス  どんな習慣も、ひたすら継続することでしか身につかないので、とにかく続けましょう。といっても、例えば、それまで全然勉強したことのない人が、いきなり今日から一日12時間勉強しようとしても、ハードルが高過ぎて頓挫してしまうことは火を見るより明らかなので、どんな小さなことでもいいから、そこから段階的にレベルを上げていく方法が確実です。しかし、これはある一定のレベルの習慣が身につくまでに相応の時間を要するというきらいのある諸刃の剣でもあります。浪人生ということで、あまり時間を費やしたくないでしょうから、ある程度は段差の大きい階段を登らなければならないことを覚悟する必要はあるかもしれません。 (Ⅵ)その他のアドバイス  数学の勉強に力を入れているようなので、以下、参考までに数学に関しての私見を書いておこうと思います。  教科書など基礎レベルの問題を完璧にしても、本番レベルの発展問題が直ちに解けるようになることはありません。なぜなら、基礎レベルの問題は、大抵公式・定理とその使い方が正しければ答えが出せる問題です。例を挙げるなら、「直角三角形において、直角を構成する各二辺の長さの平方の和は、当該直角三角形の斜辺の長さの平方に等しい」という三平方の定理に対し、直角を構成する各二辺の長さがそれぞれ3と4だったときの斜辺の長さを問う問題の如きです。これに対し、入試本番の発展レベル(就中一橋のような最難関レベル)の問題は、その公式や定理を使える状態まで持っていくことが難しいからです。先の例で言えば補助線を引かなければ直角三角形が見えてこない場合や、そのほか方程式をある程度変形しなければならない場合、使いたい公式や定理を使える状態にするために別の公式や定理を使わなければならない場合など種々雑多です。問題で与えられた具体的条件を変えてはいけない以上、こちらの見方を変えるより他に仕方がありません。そのような、発展問題を解く上で必要となる視点を研ぎ澄ませるには、実際のそのレベルの問題に取り組む以外に方法はありません。  そのため、とりわけ浪人生である相談者様は、難易度の高い問題にも定期的に取り組んだ方がいいと私は思います。(Ⅲ)で実戦力向上編をお勧めしたのも、そのためです。一応は現役時代に一通り数学を学んでいるわけですから、一から基礎に戻ってやり直すことが悪いとは全然思いませんが、かといって基礎レベルの問題ばかりに囚われずに難易度の高い問題にもたくさん挑戦して欲しいですね。  それから、問題を解く上で意識すべきことは、似たような問題にも応用できるような抽象的・一般的な法則、あるいはそういった工夫や考え方を、その問題から一つでも得ようと貪欲になることだと思います。私が実際にやっていたこととして、数学の問題演習はノートでやっていたのですが、問題を解いて採点や自己添削を一通りした後に、その問題で必要だった公式・定理や、二変数の式の問題だったら「変数を減らす工夫をする」、相反方程式の問題だったら「x^2で割る」みたいな、その問題を解くに当たって必要だった工夫をすぐ下に色ペンで書いて強調してました。他には、模試等で解けなかった問題があれば、解説を見て「こういう発想をすればよかったのか」といったことなどを、別のノートに参考書風にまとめたりしてました。大事なのは、とにかくその問題から次につながる何かを見つけ出そうとすることですね(その意味では「帰納すること」だと言ってもいい)。でないと、いくら問題を解いても、一向に思うように成績が伸びないということにもなりかねないと思います。 (Ⅶ)最後に  「志がいくら低いとはいえど、人の目標を否定する人達と関わっていては自分までくだらない人間のままに終わってしまうと感じ、一念発起して頑張っています。」という意気込みに心を打たれました。辛酸を舐めることもたくさんあるでしょうが、めげずに頑張ってください。ほとんど書き殴った感じで、全然まとまってないように思えて申し訳ありませんが、ひとまずこれにて回答を終了いたします。1c:Tc93,数学と化学に関しては私も現役の時は心当たりがあります。特に数学はセンス的な要素が強いと思っていたので、解ける解けないの差が激しかったです。 さて、少しひねった問題が来ると解けないのが悩みということですが、まず、最低限の勉強ができていることが大事です。おそらくそこらへんはテスト期間で補っているので大丈夫かと思います。 その中で同じような問題で少しひねっている問題というのはどうすればいいかわからないと思うかもしれませんが、解き方としてはひねる前の解き方と同じようなのに気づくことはできているでしょうか?そのような問題の模範解答をじっくり吟味しているでしょうか?その時解けなかった問題はしょうがないですが、そのあとのフィードバックが大事です。そして、この解法やったことがあるなと感じることが大切です。 具体的に述べるのは難しいですが、例えば二次方程式の2解が正の値をとるための条件は f(0)>0 軸>0 判別式≧0 で必要十分ですよね。これは大丈夫でしょうか? これの少しひねった問題が例えば二次方程式の解が00 f(1)>0 0<軸<1 判別式≧0 で必要十分です。これと先ほどの上の条件と比較すると同じような感じですよね?つまり端点のみに具体的な数字の条件があるときにこのような条件で進めていくのがセオリーです。 上の解法を知識ゼロから解けと言われたら厳しいものがあるかと思いますが、一通り通っていることなら問題を見たときに「あっ、この問題はこの解法かな?」と瞬時に判断できるはずです。その感覚が大事です。「あー、これどうすればいいんだっけ…?」みたいな感じになっているのは良くないです。 これは勉強する時は問題を解き始める前に一瞬立ち止まって考えください。これを意識するしないとでは雲泥の差です。これは私自身、現役の時には気づかなかったことですが、浪人してからはこのことを意識するだけで、解ける問題のレパートリーが増えました。 闇雲にただ問題をこなすだけなら、むしろその場しのぎになってしまいます。それなら、数学の問題とかは時間がないのなら問題をみてこのような解法でいけばいいかなと思えるなら解かなくていいです。 要は、解き方に“意識“して問題演習を行ってください。時間のかける方はこっちの方です。 模試の前とかは、全国模試であれば定期テストなどでできなかった問題の教科書レベルの類題を確認する感じでいいと思います。高校生は部活等で時間がないと思われますので。1e:T13f3,こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!1f:T2460, 私もよくわかりません。ただ、税金や金融、性教育等他に教えなければならないことがたくさんあるのは否定しませんが、かといって数学が全くの不要であるとも思えません。これらに関しては、何とも言いようがない感じがしてちともどかしいですね。まぁ、「数学を学んでよかった」と思ったことはあまりありませんが、「数学なんて学ばなければよかった」と思ったことは一度もありません。なので、今のところは、勉強したい人だけ勉強すれば良いんじゃないでしょうか。数学を勉強しなかったらしなかったでツケは自分に回ってくるし、そんなツケなんて回ってこなければそれはそれで良いわけですし。「数学なんて必要ない」とかいう言葉は、数学ができなくて逃げてしまった人たちがそれを正当化するための言い訳として言っている可能性だってあるわけですしね。 これで終わるのもアレなんで、一応、数学を学ぶ必要性があるという体で、その内容についてむりやりにですが考えてみました。興味があればどうぞ(長いのでご覚悟を)。 『「学問はそんなに勉めなくても人物が出来れば」などというは、教育を知らぬ人のいうことである。そんな人は何を人物と見るのか知らぬが、学問に対する努力は大いにその人を成す所以であることを忘れてはならぬ。知識の量だけを矢鱈に増すことは、一種の道楽で、馬が上手とか、芸があるとかいうに止まる。しかし知力を発達させて、判断がよく出来たり、識見が高くなったりすることは、人物を成す所以である。』(鈴木大拙)  先月でしたか、この言葉に出会いました。私はとても感銘を受けました。というのも、大学に入ったところで高校時代とあまり変わりませんでした。司法試験も今は予備校産業が盛んで、合格者の90%以上は予備校出身という現状です(数値高すぎ)。私は昨年の夏頃、一冊の本に出会い、一人の法学者(その本の著者)に憧れました。と同時に、世に言う「試験のための(効率的な)勉強」というものに嫌気がさして、本当に学問をするということについてあれこれ考えあぐねていました。そんな時にたまたま出会ったのが上の言葉であり、大いに教訓を得るとともに共感もしたからです。  たしかに、微積とか集合とか、実生活で全くお目にかかりませんし、入試が終わってから一度も触れていません。「数学なんて必要ない」と言いたくなる気持ちもわからないではないです。しかし、そのようなことを言う人たちは、そういった数学上の細かな知識を得ることが数学という学問の眼目なのだと勘違いしている人たちではないでしょうか。数学を学ぶ意義は、もっとマクロな次元のもので、数学を通してものの考え方を身につけることにあるのではないかと思います。  雪の研究で有名な中谷宇吉郎は、世界で初めて人工で雪の結晶を作った人です。その研究拠点(常時低音研究室)は、われらが北大にありました。彼の著書『科学と人生』にも次のようなことが書いてあります。すなわち、科学によって得るものは二つ、一つは科学上の知識であり、一つは科学的なものの見方である。より重要なのは後者の方であって、これはどの職業に就く人にもどの階級の人にも役に立つ、と。では、科学的なものの見方とは何であるかというと、①自分の周囲にあるものを、自分の目でよくみること、そして②腑に落ちないことがあれば「はてな」と疑問を持つこと、③その疑問の解決のためにいろいろ実験をしてみること、④その結果を受けて「あぁ、そうだったか」と自分が納得すること、⑤続いて「それでは」と次なる疑問を持つことであると書かれています。  果たして数学は科学であるかという問いには、人によって回答が分かれるみたいですが、科学の性質が、一つは「ある事柄について考えたり調べたりする時、その方法が同じならば、いつ・どこで・誰であったとしても、同じ答えや結果にたどり着く」という再現性に、今一つは因果関係がきちんとあるということにある(https://sci.kyoto-u.ac.jp/ja/academics/programs/scicom/2015/201602/04)というならば、数学もまた科学であると言わざるを得ません。ならば、数学を学ぶ意義は、やはり数学的なものの見方を学ぶことにあると言えるでしょう。  では、数学的なものの見方とはいったい何でしょうか。受験生時代、河合塾の『文系の数学 実戦力向上編』を使っていました。あれの最初のページ(一般的な参考書で「はじめに」に当たる部分)に、料理と数学は同じであるということが書かれています。ネットで全文読めますが、一応以下に一部抜粋しておきます。 「料理を作るためには,包丁や鍋といった道具,そしていろいろな調味料が必要です.数学の問題を解くためには,いろいろな公式や定理といった"道具"が必要です.料理をおいしく作るためには,道具を使いこなす技術が必要です.そして,どういう調味料をどのように使えば最高の味になるかを考えながら料理を仕上げていくのでしょう.数学の問題を解くためには,公式や定理を状況に応じて使いこなす技術が必要です.いくつかの解法が存在する場合には,最適な解法を選ぶ力も必要です.また,様々な問題を演習することで実戦力が磨かれ,複雑な設定の問題なども論理的に分析して解くことができます.」 要するに、重要なのは公式や定理を使いこなす技術であって、公式や定理を知っていること自体が最上なのではありません。そして、ここに書いてある内容は、先の「科学的なものの見方」にやはり通ずるものです。①問題で与えられた具体的条件をよく観ること。②「この問題に使える公式や定理は何だろうか」「どういうアプローチで進んでいけば良いだろうか」と疑問を持つこと。③そして、実際に解いてみること。そのままではどうにも扱いづらいのだったら式を変形したり図形に補助線を引いたりしてみたらどうか、使えそうな公式や定理を実際に使ってみたらどんな結果が得られるかなど、これは一種の実験と言えます。④それで解けたら解けたで良いし、解けなければ自分が納得するまで解答や解説を読む、⑤そして最後に、「今度はここをこうしたらどうなるだろうか」という次なる疑問に進むこと。類題と呼ばれるやつですね。こういった、ある問題に対する解決の糸口を導く過程が、数学的なものの見方につながるんじゃないでしょうか(まぁ、こういったことを考えた上で数学を勉強している受験生なんて、ほとんどいないのでしょうが。)  例えになっているかわかりませんが、法律学の基本中の基本事項に、「法的三段論法」というものがあります。「法的」なんて言葉が頭についているものだから、なんか専門的な感じがする。しかし、なんてことはありません。簡単には、法律の条文(大前提)を現実の具体的な事実(小前提)にあてはめて結論を出すという論法に過ぎません。私がまだ初学者である故の疑問かもしれませんが、問題で与えられた具体的条件に公式や定理を当てはめて答えを出すという、数学上の三段論法といったい何が違うのでしょうか。もちろん、法律の条文は年々改正され、また書かれている言葉の意味の捉え方も人によって異なる場合がある一方、公式や定理は常に一定不変である点で、法律学と数学とは大きく異なります。しかし、これは条文と公式・定理の性質の違いに過ぎず、三段論法という論法自体に大きな違いがあるわけではありません。だとすれば、法律上の問題も、数学的にものを考えてみれば、未学者とて全くのとりつく島もない問題というわけではないでしょう。  だから、最後に一言でまとめると、数学を学ぶ必要性は、ものの見方や考え方を学ぶことにあると思います。2:["$","main",null,{"className":"px-4 pt-4 pb-4","children":["$","div",null,{"className":"max-w-3xl mx-auto w-full","children":[["$","div",null,{"className":"mb-8","children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/h6xeh63x?advice=XluOkWMBp00JfyF5pONv","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"mb-4 rounded"}]}]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"三角関数の変形の使い分けについて"}],["$","div",null,{"className":"flex justify-between mb-4","children":[["$","div",null,{"className":"text-left text-xs text-caption","children":["クリップ(",26,") コメント(",2,")"]}],["$","div",null,{"className":"text-right text-xs text-caption","children":"5/24 18:50"}]]}],["$","div",null,{"className":"coach-mark mb-4","children":"UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。"}],["$","div",null,{"className":"mb-4","children":["$","$L13",null,{"clientImageUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_37B5A888556048A1B7AB46CB89E31FB9.jpg?alt=media&token=64e0f3e4-d773-448f-970c-12425d0574fb","clientUserName":"みかん","infoString":"高卒 神奈川県 東北大学志望","adviceId":"XluOkWMBp00JfyF5pONv"}]}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","consultation-part-0",{"children":[null,"三角関数の変形で、sin2乗やcos2乗を半角の公式を利用して次数下げをしたり、sinθ cosθ=tと置いて式を簡単にしたり、和積の公式を使って因数分解しやすくしたり、sin2乗 cos2乗=1と置き換えたり、様々な変形がありますが、これらはどのように使い分け、どんな問題の時にどの変形を使うかが上手く見極められません。見分ける方法があれば教えて下さい。m(_ _)m"]}]]}],["$","div",null,{"className":"pt-4","children":["$","$L14",null,{}]}]]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"回答"}],["$","div",null,{"className":"mb-4","children":["$","$L15",null,{"adviserImageUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_UYYxfe95n1QEeUJN.jpg?alt=media&token=02baa37f-1479-4642-8e40-932126653bff","adviserName":"クウルス","adviserDepartment":"京都大学工学部","adviceId":"XluOkWMBp00JfyF5pONv"}]}],["$","div",null,{"className":"coach-mark mb-4","children":"すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。"}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","advice-part-0",{"children":[null,"質問者様は高2ということなので、数Ⅱまでの範囲で回答させていただきます。\n\n\n【三角関数を変形する目的】\n\nまず、三角関数を変形するのは必ず目的があります。\n①三角関数を含んだ方程式・不等式を解くため\n②三角関数を含んだ関数の最大値・最小値を求めるため\nなどがよくある目的ですね。\n\n《①について》\n方程式や不等式ははじめに因数分解で攻めます。\n(因数)(因数)=0\nといった形になれば、あとは簡単ですね。\n因数分解しない場合は②の考え方をそのまま借りましょう\n\n《②について》\nsinのみ、cosのみ、tanのみ、の式に帰着させます。そしたら見たことある関数(一次関数、二次関数など)になります。\nそのための手段として\n*三角関数の相互関係\n*加法定理を用いた公式\nなどが存在します。\n\n\n---------\n\n【質問主様の弱点と思われるところ】\n\n数Ⅱの三角関数に入ってからうまくいかなくなった高校生は加法定理を用いた公式につまづいている人が多いです。\n公式自体覚えていても、問題でうまく活用出来ないことがよくあります。\n\n先程の項目で書きました、変形のそもそもの目的を意識して演習してみてください。\n使い分けパターンは青チャートなどのテキストに詳しく記載されています。これを身につけることが大切です。\n\nパターンを繰り返しの演習で身につける際に、\n「因数分解を目指す!」\n「sinのみ、cosのみ、tanのみの式を目指す!」\nという意識を持って取り組むことで、何故その式変形を使うのかが体感出来ます。\n\n\n---------\n\n【最後に】\n\n問題のゴールから逆算して考えることが数学においては大切です。\n初めから逆算して考えることなんて出来ないから、パターンを演習によって身につけるわけですが、ゴールを意識してパターンを身につけなければ、何のためのパターンなのかがわかりません。\n必ず、式変形の目的を意識した演習を心掛けてください。"]}]]}],["$","div",null,{"children":["$","$L7",null,{"href":"https://ck.jp.ap.valuecommerce.com/servlet/referral?sid=3364577&pid=884970531&vc_url=http%3A%2F%2Fshingakunet.com%2F%3Fvos%3Dnrmnvccp0000100","rel":"nofollow","target":"_blank","children":["$","$L8",null,{"src":"/images/document_request_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink パンフレットバナー画像","className":"mt-4 rounded"}]}]}],["$","div",null,{"className":"pt-4","children":["$","$L16",null,{"id":"adsbygoogle-init-under-advice"}]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","h1",null,{"className":"text-xl font-semibold","children":["コメント(",2,")"]}],["$","$L17",null,{"adviceId":"XluOkWMBp00JfyF5pONv"}]]}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"divide-y","children":[["$","div",null,{"className":"flex py-4","children":[["$","div",null,{"className":"mr-2","children":["$","$L18",null,{"avatarUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_37B5A888556048A1B7AB46CB89E31FB9.jpg?alt=media&token=64e0f3e4-d773-448f-970c-12425d0574fb","contributorName":"みかん","adviceId":"XluOkWMBp00JfyF5pONv"}]}],["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"mb-2","children":["$","$L19",null,{"contributorName":"みかん","adviceId":"XluOkWMBp00JfyF5pONv"}]}],["$","div",null,{"className":"text-xs text-caption","children":"7/8 11:30"}]]}],["$","div",null,{"className":"text-xs whitespace-pre-wrap","children":"ご丁寧なお返事ありがとうございます。\nなるほど、何を求めたいのか、そのために何をどう変形すれば良いのかを考えれば良いのですね!\n初見の問題で、いきなり半角の公式で次数下げしようなどと思いつけるのだろうか、と考えこんでしまっていましたが、目的を念頭に置けていなかったのかも知れません。三角関数に限らず、心がけたいと思います。\n最大最小を求めるときは殻を統一、など使い分けも教えて頂き納得できました。ありがとうございます。\nあと、今思ったのですが、三角関数の最大最小の問題で、sinx cosx=tなどと置く場合は、殻を統一、というよりはtで統一、といったところなのでしょうか。このような文字を置き直すものは、パターンとして覚えるしかないのですか?それともしこれも見分け方があれば教えていただけると嬉しいです。\n色々伺ってしまいすみません😭😭"}]]}]]}],["$","div",null,{"className":"flex py-4","children":[["$","div",null,{"className":"mr-2","children":["$","$L18",null,{"avatarUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_UYYxfe95n1QEeUJN.jpg?alt=media&token=02baa37f-1479-4642-8e40-932126653bff","contributorName":"クウルス","adviceId":"XluOkWMBp00JfyF5pONv"}]}],["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"mb-2","children":["$","$L19",null,{"contributorName":"クウルス","adviceId":"XluOkWMBp00JfyF5pONv"}]}],["$","div",null,{"className":"text-xs text-caption","children":"7/10 4:03"}]]}],["$","div",null,{"className":"text-xs whitespace-pre-wrap","children":"文字tで置き換えるのは「見やすくする」ためです。なので置き換えなくても良いです。\ncosのかたまりやsinのかたまりを一つの文字として見たときに、その関数が一次関数だったり二次関数だったりするわけです。\n三角関数を一次関数の考え方や二次関数の考え方で捉えて、最大最小が導き出そうというのが基本ですよ。"}]]}]]}]]}]}],["$","h1",null,{"className":"text-xl font-semibold","children":"よく一緒に読まれている人気の回答"}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"divide-y","children":[["$","div",null,{"children":["$","$L7",null,{"href":"/advice/XluOkWMBp00JfyF5pONv","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"三角関数の変形の使い分けについて"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"質問者様は高2ということなので、数Ⅱまでの範囲で回答させていただきます。\n\n\n【三角関数を変形する目的】\n\nまず、三角関数を変形するのは必ず目的があります。\n①三角関数を含んだ方程式・不等式を解くため\n②三角関数を含んだ関数の最大値・最小値を求めるため\nなどがよくある目的ですね。\n\n《①について》\n方程式や不等式ははじめに因数分解で攻めます。\n(因数)(因数)=0\nといった形になれば、あとは簡単ですね。\n因数分解しない場合は②の考え方をそのまま借りましょう\n\n《②について》\nsinのみ、cosのみ、tanのみ、の式に帰着させます。そしたら見たことある関数(一次関数、二次関数など)になります。\nそのための手段として\n*三角関数の相互関係\n*加法定理を用いた公式\nなどが存在します。\n\n\n---------\n\n【質問主様の弱点と思われるところ】\n\n数Ⅱの三角関数に入ってからうまくいかなくなった高校生は加法定理を用いた公式につまづいている人が多いです。\n公式自体覚えていても、問題でうまく活用出来ないことがよくあります。\n\n先程の項目で書きました、変形のそもそもの目的を意識して演習してみてください。\n使い分けパターンは青チャートなどのテキストに詳しく記載されています。これを身につけることが大切です。\n\nパターンを繰り返しの演習で身につける際に、\n「因数分解を目指す!」\n「sinのみ、cosのみ、tanのみの式を目指す!」\nという意識を持って取り組むことで、何故その式変形を使うのかが体感出来ます。\n\n\n---------\n\n【最後に】\n\n問題のゴールから逆算して考えることが数学においては大切です。\n初めから逆算して考えることなんて出来ないから、パターンを演習によって身につけるわけですが、ゴールを意識してパターンを身につけなければ、何のためのパターンなのかがわかりません。\n必ず、式変形の目的を意識した演習を心掛けてください。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","クウルス"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":26}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math11.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/VUyxF3YBTqPwDZPu3S-1","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"共テ数学半分とるには"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"個人的な意見ですが、整数と場合の数が比較的できるということは数学自体が苦手だとは思えません。これを踏まえて、時間配分、勉強法のアドバイスをさせていただきます。\n\nまず、時間配分についてですが、取れるところから取ることが基本だと思います。もちろん大問1から始めて間に合うならばいいのですが、間に合わない場合は自分のできるところから取り組んだほうがいいです。\nぐみさんの場合、1Aは整数と確率を初めにやったほうがいいと思います。まずはどんな問題が来ても各12分前後で解き切ることを目標にしましょう。\n2Bは得意単元がないようなので、時間配分については何とも言えません。\n\n次に勉強法です。\n整数と場合の数が得意なのなら、おそらく数列は理解できると思います。だからまずは教科書で数列の基本的なパターン(nの式で表された漸化式、等差、等比の一般項、その和の求め方など)を覚えたほうがいいと思います。\n苦手な単元についてですが、三角関数、指数関数は共通テストでもおそらく狙われるため早急に行ったほうがいいです。まずは教科書の問題を用いて、グラフを用いた解き方をするといいと思います。現にセンター試験ではグラフを用いて解くように誘導することがよくあり、数式を見える形にする訓練は必要です。\n\nあと、三角関数、指数関数が苦手だというよりもしかしたら二次関数が苦手なのかもしれません。三角関数、指数関数、対数関数などの関数系は結局二次関数や不等式の問題に帰着することが多々あります。\n文字が入った二次関数の最大最小を求める際に、なぜ軸で場合分けするのか、f(0)が正であることを用いるのか、その意味が分かりますか?グラフで考えると当たり前ですが、式だけでは伝わらないことがあります。\n\n参考書を一周するのはもちろん素晴らしいことで、継続する力は本当に尊敬しますが、それよりも教科書をもう一度見直したほうが良いです。教科書の章末問題は一瞬で解法が浮かぶくらいがちょうど良いです。そこから少しずつ応用問題にチャレンジしてどの解法が基礎になっているのかを考えることが大切です。\n\n\nとても大きな質問だったので、具体的には回答できなかったかと思います。また何かあったら何でも聞いてください"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学農学部"," ","まき"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":17}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":7}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math12.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1a","ad-on-advice-list-2",{"id":"ad-on-advice-list-2"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/t67JjPn7VPePttQX6aP7","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"証明や導出がすごい気になってしまう"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"三味線さん、はじめまして。\n\nお気持ちはすごく分かります。\nたしかに解答の細かいところに疑問を持ったり、その都度公式を導出していると参考書の進むペースは遅くなってしまいますが、その分、質は高くなると思うので全然良いことだと思いますし、むしろそうするべきだと思います。\n\nよく言われる「数学は理解」という言葉は、なぜその公式を使ったのか、なぜその解法で解くのか、なぜその変換を行うのか、もっと細かいことで言うと、なぜその順に解答を記述するのかといったことを理解することです。\n\n「数学は暗記」という言葉もたまに聞きますが、これは単純に英単語みたいに暗記すると言うことではなくて、どうしてこの解法を使うのかを理解した上でどうゆう問題が出たらどの解法を使うのかを暗記すると言うことです。\n仮に理解の過程を飛ばして暗記だけすると、少し問題の形が変わっただけで解法が思い浮かばないということになってしまいます。\n\nそして理解を深めるためには、三味線さんのように細かいところにも疑問を持って問題を解くのが一番の近道です。公式は導出ができる方が理解度ははるかに上がりますし、たまにある公式の導出に基づいた問題なんかも出題されることもあります。\nまた質問文中のことで触れると、なぜ置換積分はこうゆう形でするのか、一次独立とは何か、解答に使われている言葉の意図、こういったことに疑問をもって考えるのはとても良いことだと思います。確認しても忘れてしまうのは人間なので仕方ないことで、確認してその時に理解したことをノートなんかに纏めておきましょう。次に同じような疑問が出た時にノートを見返すことで少しずつ定着して力になっていくはずです。\n私の場合だと2.3回では定着せず、5回とか10回その都度見返すことで定着し始めた感じだったので、忘れているから力になっていないと焦らずに、自分のペースで頑張ってください!\n\n応援しています☺️\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","さかさか"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":5}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math5.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/N6qsgOhiL7x8QUtJAPIg","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数ⅠAを最初の1周履修する"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1b"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学法学部"," ","たけなわ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math11.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/_yDM5msBTqPwDZPue9dX","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"形式的に覚えてしまう"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1c"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学理工学部"," ","シュンペーター"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":21}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math13.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1d","ad-on-advice-list-5",{"id":"ad-on-advice-list-5"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/51JEE4MBTqPwDZPu09jv","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数学が全然できるようにならない"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1e"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["大阪大学経済学部"," ","RIZ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":34}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":8}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/WbPkjpDjDI8CgNsSn6At","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数学を学ぶこと"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1f"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学法学部"," ","たけなわ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":6}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math11.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/URn2ZmsBTqPwDZPuz90B","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"公式の証明について"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!回答させていただきます。\n\n公式の証明を覚えているとどう役に立つかということですが、正直、受験に合格するという観点では公式の証明問題が解ける以上のメリットはあまりないです!\n公式の証明では、受験数学のセオリーからみれば特殊な考え方を使うものが多く、考え方が他の問題に役立つ事も少ないのです。\n数学という学問を修める意味では、公式の証明を理解していることは重要だと思いますが。\n\nしかし、本番で公式の証明問題が解けるという一点だけで、覚える理由としては十分ではないでしょうか?\n実際の入試でそういった問題が出ているわけですし。4完を狙うなら公式の証明問題は落とせませんしね!\n\n余談ですが、三角関数の和積の公式とか、ベクトルの内積を使った三角形の面積の公式とかを、もし暗記せずにテスト中に導こうと思ってるなら、それはダメですよ!時間がもったいないですから。これはマジです!\n\n長文失礼しました。頑張ってくださいね!\n\n\n\n\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学農学部"," ","PaNDa108"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":5}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math3.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L20","ad-on-advice-list-8",{"id":"ad-on-advice-list-8"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/-hyul2sBTqPwDZPuOYPX","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"指数関数を解くコツは"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!\nこうしんと申します!\n\n指数関数…というと範囲が難しいので、\n最大最小問題の解き方→指数関数の処理方法\nという形で話を進めていきますね!\n\nまず最大最小問題ですが、これは方程式・関数を扱う分野で出てきます。\nこの分野の攻略方法は以下の通りです\n・文字を見分ける\n・解答法を知る\n(方程式として解く、関数として解く、不等式として解く)\n\n一つずつ説明していきますね。\n\n・文字を見分ける\n文字は、定数と変数があります。物理ではこれがはっきり決まってますが、数学では全く別の性質で、定数でさえ値を動かすことがあります。\nなので\n定数…中心にはない文字\n変数…中心に扱っていく文字(〜と解く、微分する、といった文字の中心となります)\nこれをまず見分ける必要があります。\n見分け方は、定数が「分布(どういう値をとるのか?)を知りたい文字」であるという性質がある点です。他には、定数の方が次元が高い、扱いづらいという特徴がありますね。\nこうして、変数を絞り込んでおきます。\n変数は1個にしてください。\n\n・解答法を知る\n解答法は3つに分かれます。\n\n方程式としてみる\n→解の配置(0より大小となる点を探す)・座標・対称式\n関数としてみる\n→微分してグラフを描く\n不等式としてみる\n→実数の2乗は0以上を使う、コーシーシュワルツ、相加相乗平均\n(不等式は難しいので、関数としてみた方が早いです)\n\nこれらの解答法を調べてみてください!完璧にすると対応ができます!\n\n\n最大値というのは、\n・関数がそれ以上に増えない値\n・それを満たすxが一つ定義域に存在する値\nであるという性質を持ちます。\n最小値は、反転した性質ですね。\n\nそのため最大値の候補は絞られます\n→①極大値 ②区間の端\nこの2点を調べてみましょう。(最小値は反転です)\n\n最後に、最大最小を論じる際に、よく出てくる言葉があるので、それを押さえておきましょう。\n・領域→「接する時」「端の時」に最大最小\n・接する→最短距離があります、注意です\n\nポイントはこんな感じです!\nよく分かんないかもしれませんが、演習しながら見てください!意味がわかってくるはずです!\n頑張ってください!応援してます!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学理学部"," ","こうしん"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":20}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math9.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/_Utbv3QBTqPwDZPu8WZp","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"極める分野を絞るのは良いか"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"過去問で出題されている中だと、数列や複素数平面は典型問題が多く、演習が結果に結びつきやすいと思います。\nですが、出題されている他の分野や出題されていない分野に関しても勉強しておいた方がいいと思います。問題に対するアプローチの数を増やすことにもなりますし、なにより、出題される可能性が0では無いからです。\n三角関数単体や指数関数単体で出題されることは、なかなか無いですが、他分野と融合されることは多いのでやっておいて損はありません。\nまた、整数はどれだけ問題に触れたかが大事になったりするので、一対一対応の演習程度は少なくとも解いておいた方がいいでしょう。\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学医学部"," ","Yu"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}]]}]}]]}]}]