UniLink WebToAppバナー画像

数学の証明問題について

クリップ(1) コメント(1)
8/7 19:25
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

tatsuki120

高卒 東京都 早稲田大学スポーツ科学部(62)志望

受験するところが全てマーク式なのですが、数学の証明問題は書けるようになった方がいいですか?理解するだけでいいのでしょうか?

回答

回答者のプロフィール画像

kp

慶應義塾大学経済学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
慶應の経済学部の者です。 書けるようになった方が良いです! なぜなら、マーク式とは言っても、問題はただの誘導形式の記述問題みたいなものなので、相手の意図を汲み取らないと解答できません。 ですから、証明は自分で書けるようにしておくのがベストだとおもいます!
UniLink パンフレットバナー画像

コメント(1)

tatsuki120
8/8 5:39
わかりました。 ありがとうございます!

よく一緒に読まれている人気の回答

数学の証明問題について
慶應の経済学部の者です。 書けるようになった方が良いです! なぜなら、マーク式とは言っても、問題はただの誘導形式の記述問題みたいなものなので、相手の意図を汲み取らないと解答できません。 ですから、証明は自分で書けるようにしておくのがベストだとおもいます!
慶應義塾大学経済学部 kp
1
0
文系数学
文系数学カテゴリの画像
公式の証明について
こんにちは!回答させていただきます。 公式の証明を覚えているとどう役に立つかということですが、正直、受験に合格するという観点では公式の証明問題が解ける以上のメリットはあまりないです! 公式の証明では、受験数学のセオリーからみれば特殊な考え方を使うものが多く、考え方が他の問題に役立つ事も少ないのです。 数学という学問を修める意味では、公式の証明を理解していることは重要だと思いますが。 しかし、本番で公式の証明問題が解けるという一点だけで、覚える理由としては十分ではないでしょうか? 実際の入試でそういった問題が出ているわけですし。4完を狙うなら公式の証明問題は落とせませんしね! 余談ですが、三角関数の和積の公式とか、ベクトルの内積を使った三角形の面積の公式とかを、もし暗記せずにテスト中に導こうと思ってるなら、それはダメですよ!時間がもったいないですから。これはマジです! 長文失礼しました。頑張ってくださいね!
京都大学農学部 PaNDa108
5
2
理系数学
理系数学カテゴリの画像
証明や導出がすごい気になってしまう
三味線さん、はじめまして。 お気持ちはすごく分かります。 たしかに解答の細かいところに疑問を持ったり、その都度公式を導出していると参考書の進むペースは遅くなってしまいますが、その分、質は高くなると思うので全然良いことだと思いますし、むしろそうするべきだと思います。 よく言われる「数学は理解」という言葉は、なぜその公式を使ったのか、なぜその解法で解くのか、なぜその変換を行うのか、もっと細かいことで言うと、なぜその順に解答を記述するのかといったことを理解することです。 「数学は暗記」という言葉もたまに聞きますが、これは単純に英単語みたいに暗記すると言うことではなくて、どうしてこの解法を使うのかを理解した上でどうゆう問題が出たらどの解法を使うのかを暗記すると言うことです。 仮に理解の過程を飛ばして暗記だけすると、少し問題の形が変わっただけで解法が思い浮かばないということになってしまいます。 そして理解を深めるためには、三味線さんのように細かいところにも疑問を持って問題を解くのが一番の近道です。公式は導出ができる方が理解度ははるかに上がりますし、たまにある公式の導出に基づいた問題なんかも出題されることもあります。 また質問文中のことで触れると、なぜ置換積分はこうゆう形でするのか、一次独立とは何か、解答に使われている言葉の意図、こういったことに疑問をもって考えるのはとても良いことだと思います。確認しても忘れてしまうのは人間なので仕方ないことで、確認してその時に理解したことをノートなんかに纏めておきましょう。次に同じような疑問が出た時にノートを見返すことで少しずつ定着して力になっていくはずです。 私の場合だと2.3回では定着せず、5回とか10回その都度見返すことで定着し始めた感じだったので、忘れているから力になっていないと焦らずに、自分のペースで頑張ってください! 応援しています☺️
京都大学工学部 さかさか
5
2
理系数学
理系数学カテゴリの画像
証明問題が出来るようになるには
常日頃から問題を解くときに、 なんでこの解き方になるんだろう? なんでこんな計算したんだろう? なんでこの書き始めにしたんだろう? というように、全てに理由を求めて思考するようにすると、証明の時も「これを証明するためにはどうすればいいのか」が分かりやすくなりますよ!
名古屋大学理学部 mimimimistudy
1
0
文系数学
文系数学カテゴリの画像
数学の公式の証明
暗記はしなくてもいいと思いますが、ある程度理解しておくべきかとは思います。それが理解できないのであれば、おそらくほかの数学の問題も根本が理解できていない可能性が高いからです。ただ、覚えるのの時間がかかるのであり、現在の志望校の過去問に公式の証明が出題されていないのであれば、最悪覚えずにただひたすら問題を解いて、解ければOKという感じでもいいかと。時間との相談ですね。 参考になると嬉しいです。
東京大学文科三類 あおい
9
2
文系数学
文系数学カテゴリの画像
公式の証明
公式の証明はできた方がいいです!! 直接証明が問われる問題が多いわけではないですが証明がキチンとできるということはその公式の原理がわかっているということなので応用問題などに対応がしやすくなります( ^ω^ ) 一見難しそうに見える問題も原点に戻ればあっさり解ける問題は結構多いので是非証明はできるようになっておいた方がいいと思います! 応援してます📣
早稲田大学創造理工学部 tatsuya1013
3
0
文系数学
文系数学カテゴリの画像
公式の証明
こんにちは!東北大学文学部のkitaです! お答えさせて頂きます! 理想としては、教科書で習った公式は証明できないといけません。 大学の先生に、参考書にあったよね?と言われても知らん!と言えますが、教科書でやったよね?、と言われたら何も言えません😅 ただ、全てを意味もなく丸暗記するのはナンセンスです。 そこで、僕が実際に行っていたのは、何度も出る公式(使用頻度が多い)や、今までに他の大学も含め問われたことのある公式、は必ずやりました! 例としては、正弦余弦、加法定理、点と直線の距離公式、積分の面積公式あたりが王道でしょうか。 他には、僕は数学が好きだったので、ちょっと勉強に疲れた時に、息抜きとして公式の証明を調べて、エレガントな証明方法があると感動してました(笑) 数学の定理や公式の証明は、1つの証明にさまざまな知識を必要とします。それなので、基礎がないと自力で行うのが難しいですし、逆に出来るようになるとかなりの数学がついた、と言ってもいいでしょう。 質問の的確な答えになっているか分かりませんが、入試に出るかも大事ですが、その定理や公式の根本を知ると、間違いなく入試に役立ちます! 最後に、たくとさんの目標が達成されることをお祈りしています。頑張ってください!!
東北大学文学部 kita
9
5
文系数学
文系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
34
8
文系数学
文系数学カテゴリの画像
公式の証明は何をすべきか
各分野の導出してほしい公式は 力学…特になし。むしろ、各式を適切に使えるかが大事。問題演習を積んでください。強いて言うなら単振動の公式の導出ですが、あまり必要ではないです。 熱力学…モル比熱CvとCpの値の導出。熱力学第1法則を理解しているかがポイント あと、分子運動論のP=Nmv^2/3Vの導出は絶対に抑えてください。これは出ます。導出までが暗記事項です。 波動…この分野は導出過程が大事です! 波動方程式の完成形までの導出、ホイヘンスの原理の言葉の説明、干渉、回折格子の式がありますが、特に大事なのが、ドップラー効果の公式の導出です。ドップラー効果は入試問題でも導出を誘導して導く問題が多いです。 電磁気…この分野も公式の導出のオンパレードです! I=envsの導出から始まり、フレミングの法則の理解、コイルの自己誘導起電力、そして、交流のインピーダンスの導き方の理解があります。 原子…コンプトン効果とエネルギー準位の導出は必須です。 多いかと思いますが、物理は上記が理解できたら入試問題は正直怖くないですよ。夏を中心に頑張ってください。
慶應義塾大学理工学部 シュンペーター
31
1
物理
物理カテゴリの画像
数学の公式について
数学を早稲田と旧帝受験で使った者です! 大学や学部にもよりますが、早稲田の文系数学受験であれば公式を覚える必要はありません🙅‍♂️🙅‍♂️ 阪大なんかはたしか文系でも公式成立の証明を出してたはずですが、おそらく早稲田では今後も問われることはないと思われます😉 公式は覚えるものと言うよりは使いこなすものとして頭に叩き込むべきですね🤔僕は参考書などは使っていませんでした!よく聞く話かも知れませんが、センター試験は良問が多いです。公式を使いこなすためにはセンターたくさん解くのが良いですよ🙆‍♂️ まだ時間はあります!頑張ってください🤗
早稲田大学人間科学部 ukarude
0
1
文系数学
文系数学カテゴリの画像