UniLink WebToAppバナー画像

理系数学の勉強法

クリップ(9) コメント(0)
8/30 13:05
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

ma

高3 東京都 筑波大学理工学群(60)志望

こんにちは。 私は高3で国公立理系志望です。 今まで数学を勉強するとき、特に何かを意識して解くというより、問題を解いて分からなかったらすぐ解答を見て納得をするという方法を繰り返していました。 しかしまた同じ問題をやっても分からず同じように解答を見るを繰り返すばかりで何も身に付いてないように思えます。 問題集はフォーカスゴールドを使っているのですが、しっかり数学が身に付く効率の良い勉強法を教えていただきたいです。 また、効率悪いと分かっていますが、選ばなかった問題も出来ないかもしれないと思うと不安になってしまうのでこれから数学1A2B3を全てやろうと思っています。これってやっぱりこれからやるには時間かかるし良くないですか?

回答

回答者のプロフィール画像

rockyyy

大阪大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは。rockyyyと申します。 数学の勉強法について僕が思うことをこれから紹介するので、よかったら参考にしてください! まず、数学の勉強をしていて、わからない問題が出てくると思います。その時、「あーわからないから、すぐ答え見た方が効率いいし、そうしよ」と思ってはいけないと個人的には思います。なぜかというとそれでは「自分の持っている知識で、問題を解く」という練習ができないからです。試験というのは、自分が勉強で解いた事がある問題と全く同じ問題が出るわけではありません。なので、数学を得意になるには「未知の問題に対しても、自分が培ってきた知識を使って解けるようになる」という能力が必要です。それは、自分で考えて問題を解こうとする姿勢がないと身につかないと個人的には思います。なので、数学の問題を解いているときに、わからなかったらすぐ答えを見るのではなく、最低でも10分くらいは自分の今持っている知識を使って試行錯誤することが大事ではないかなと思います。 ただ、注意して欲しいのは、別に解説を読むことは全然間違っていません。自分が自分なりにその問題に対してやれることはやってから、解説を読むようにしましょう。そうすると、解説の内容やその意味合いについての理解も深まると思います。「あ、自分はこうやったけど、解説のようにやるともっと効率がいいな」とか「自分がやった方法は、こう言った理由で間違っていたのか」という事がわかりやすくなります。そのためにも一回自分がわからない問題も自分なりに試行錯誤する事が大事だと思います。
また、自分が解説を読んだ後に新しく知ったことや、なるほど!と思ったことは必ず自分の言葉で書き残しておくようにしましょう。これはとても大事です。 以上のことを考えて、数学の勉強法を変えてみてください!きっと成績は伸びると思います。 次に、これからの数学の勉強スケジュールについてですが、僕は全部の分野をやる必要はないと思います。模試の結果からわかっている自分の苦手分野を重点的にやると良いと思います。もし自分の苦手分野があまりわからなかったら、数学の問題集の基礎問題を解いてみましょう。その分野のすべての問題をやる必要はないです。基礎問題があまりにも解けなかったら、その分野についての理解が足りていないということなので、そこはまた重点的に勉強すれば良いと思います。 以上になります。最後にもう1つお伝えしたいことが、数学は暗記科目ではないということです。解法を丸暗記しても問題が解けるようにはなりません。解説を読んで、「なぜそうなるのか」「なぜこのような解き方をしているのか」「なぜ自分の解き方ではダメなのか」ということを学ぶ事が大切です。数学が苦手な人は大抵が丸暗記をしようとしている人なので、一応お伝えしておきました。勉強法を変えれば、しっかり知識も定着して、数学が解けるようになると思います!受験応援しています!
回答者のプロフィール画像

rockyyy

大阪大学工学部

16
ファン
9.5
平均クリップ
4.7
平均評価

プロフィール

2次受験科目 数学 物理 化学 英語 共通テスト 理系科目 国語 日本史 進研模試、駿台模試、河合模試、全て受験経験あり 部活経験、大学体育会経験あり 京都大学大学院工学研究科 合格 大阪大学大学院工学研究科 合格 理系科目は得意です!よろしくお願いします! メッセでもオンラインでも気軽にどうぞ!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

数学が絶望的
こんにちは。rockyyyと申します。 数学の勉強法について僕が思うことをこれから紹介するので、よかったら参考にしてください。 まず、数学の勉強をしていて、わからない問題が出てくると思います。その時、「あーわからないから、すぐ答え見た方が効率いいし、そうしよ」と思ってはいけません。なぜかというとそれでは「自分の持っている知識で、問題を解く」という練習ができないからです。試験というのは、自分が勉強で解いた事がある問題と全く同じ問題が出るわけではありません。なので、数学を得意になるには「未知の問題に対しても、自分が培ってきた知識を使って解けるようになる」という能力が必要です。それは、自分で考えて問題を解こうとする姿勢がないと身につかないと個人的には思います。なので、数学の問題を解いているときに、わからなかったらすぐ答えを見るのではなく、最低でも10分くらいは自分の今持っている知識を使って試行錯誤することが大事ではないかなと思います。 注意してほしいのは、自分が自分なりにその問題に対してやれることはやってから、解説を読むようにしましょう。そうすると、解説の内容やその意味合いについての理解も深まると思います。「あ、自分はこうやったけど、解説のようにやるともっと効率がいいな」とか「自分がやった方法は、こう言った理由で間違っていたのか」という事がわかりやすくなります。そのためにも一回自分がわからない問題も自分なりに試行錯誤する事が大事だと思います。 また、自分が解説を読んだ後に新しく知ったことや、なるほど!と思ったことは必ず自分の言葉で書き残しておくようにしましょう。これはとても大事です。 以上のことを考えて、数学の勉強法を変えてみてください!きっと成績は伸びると思います。 そして、この夏に基礎固めができなかったならこれから基礎を固めていく必要があります。自分の数学においての苦手分野がわかっていると思うので、そこを重点的にこれから復習しましょう。ここを妥協してはいけません。全然面白くないかもしれませんが、後の自分を助けると思って取り組んでください。そしてそれがある程度終わったら、過去問に取り組むようにしましょう。過去問はたくさん解いた方が良いです。そして解いた後は必ずやり直しをして、自分の苦手なところがまたわかったら、そこをテキストなどを用いて復習するといっだことをしましょう。問題を実際に解いてみると、意外と自分の苦手な分野がまだたくさんあるということに気づくと思うので、それを見逃さず、適宜復習してください。 以上になります。数学で高得点が取れれば、かなり優位に立つことができます。残りの期間、必死に頑張ってください!応援しています!
大阪大学工学部 rockyyy
14
4
理系数学
理系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
235
33
理系数学
理系数学カテゴリの画像
数学が出来るようになるには?
分からなかったら答えを見てOKです。 私は「自分で解いてみる→つまづいたら答えを見る→見ながら解いてみる→しばらくしてからもう一度解いてみる」というやり方をしていました。使っていたのはIAは青チャート、ⅡBは黄色チャートです。過去問などをやる場合は、少し時間をかけても解けない問題があれば、制限時間を無視して早くに切り上げ、解き直しに移りました。 私は理系ですが、受験で使ったのは文系数学でした。二次試験直前に数日このやり方で数列の勉強をしたところ、数列だけは完答することができました。元々数学が苦手で後回しにしていたところもあったので、もっと早くやれば良かったと思いました。 数学は本当にやればやるだけ伸びます。いろいろな問題を解くことで、それまでは思いつかなかったような解法が頭に浮かぶようになります。また、全ての単元に触れることも重要です。私は試験本番、数列の問題を解く際に数日前に解いていた確率の問題の解法が役に立ちました。 どれだけ問題を効率よく多くこなせるか、これができたらチャートだけでも十分です。余裕があれば1対1なども見てみるといいかもしれません。 がんばってください。応援しています。
北海道大学医学部 水面
7
0
文系数学
文系数学カテゴリの画像
数学の解き方
初めまして。rockyyyと申します。 数学についての勉強法についてお答えします。 結論から言うと、YNUさんの勉強法は間違ってはいません。何度も解き直して、解法を落とし込むという方法はとても重要です。しかし、時間がかかりすぎてしまうため、時間が惜しい受験期間においてはあまり望ましくないのかなと思いました。 僕は、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今から頑張っても全然遅くはありません。よければ僕の勉強法も参考にしてもらって頑張って欲しいです!応援していますよ!
大阪大学工学部 rockyyy
8
2
文系数学
文系数学カテゴリの画像
初見で解けるようになるには
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
九州大学経済学部 riku
13
5
過去問
過去問カテゴリの画像
数学の勉強法
東京大学に所属している者です。 数学力を身につける上で最も重要になってくるのが、「模範的な思考のインプットとアウトプット」です。これだけでは分かりにくいと思うので、「問題を解いた後にするべきこと」と、「何故それをやった方が良いのか」というのを以下で述べていきますので、是非参考にしてみてください。 まず、【どうしてその解答・解法になるのか】を一文・一式ごとに意識しながら解いた問題の丸つけや復習をしましょう。これは数学に限らず他の科目でもするべきではありますが、特に数学の場合は、「どうして模範解答は最初にこの方針を立てることができたのか」「どうして模範解答はここでこの式変形をしているのか」「どうして模範解答はここでこの定理を使おうとしたのか」など、言い始めればキリがないです。このような普通であれば見逃したり流したりしてしまうような細かいことにまで意識を向けることで、「解答へのアプローチの模範的な思考」をインプットすることができます。 次に、【丸つけや復習をした問題を翌日に何も見ずに解く】というステップに移ります。こうすることで、前日にインプットした「解答へのアプローチの模範的な思考」をアウトプットする練習ができます。必ず昨日考えていたことが自然にドンドン思い出されるので、復習がただの流れ作業にはならず、効率的な数学の勉強になるはずです。 少しでも参考になれば幸いです。
東京大学文科三類 Mx
32
6
文系数学
文系数学カテゴリの画像
数学の分からない問題の勉強方法
ほさかさんの質問に答える前に、少し遠回りをさせてください!! 私は数学の実力をつけるために ①解法暗記 ②複数の解法を組み合わせる、複数の解法から一つに絞る力をつける(数学的思考力をつける) ことが大切だと考えています。 ①では「すぐ答えを見ること」は正しいですが、②では逆に長考することが推奨されます。 手も足も出ない問題とは方針がまるっきり立たない問題だと推測します。 方針が立たない場合、そもそも解法を知らないパターンと、どの解法が使えるのかわからないパターンがあります。前者は①に、後者は②に対応します。 ① 解法暗記をすべき問題は青チャートの例題が特にそうですし、京大でもそうカテゴライズされるべき問題はあります。(京大理系2022大問3のユークリッドの互除法など) 例えば青チャートを終えたとしても、発展問題の演習の中で出てきた新しい解法を知識として蓄えることは重要なんです。 それと一応説明すると、解法暗記とはある問題のパターンに対してどのような解法が合致するのか覚えるということです。数学の性質を根拠に基づいて解法を覚えるべきことです。(部分的には高度な内容もあるで、初学〜中級者の方はパスしても構わない場合もあると思います) ② 目新しい条件が設定されていたりして、どんな解法が使えるかすらわからない時や、一見典型問題に見えていつも通りな解法が通じない時があります。そのような問題に対処するためにはとにかく時間をかけていろいろ試す他ありません。値を代入したり、より簡単な条件で考えてみるなどの実験から着想を得て既知の解法に帰着することや、別の分野から問題を考えてみる(たとえば、微積の問題だけど、ベクトル、三角関数、図形の性質の分野の解法を使う)ことなど色々試すパターンがあります。どんなパターンがあるかを多くの問題を解く中で経験していくことが重要です。 (=数学的思考力をつける、という意味で私は使います) ここからほさかさんの質問に答えます! ①解法暗記②数学的思考力をつける、の両方の面で多くの問題を解くことが一番大切になります。知識を網羅してさらに定着させるためです。 青チャートなどの網羅系参考書では回転率を上げてまさしく解法を網羅するのが良いと思います。多くの問題を解くことが一番の目標です(理解が二の次でいいということではありません)。この段階では、解法を知らないのだから、わからない問題は答えをすぐにみるべきです。 プラチカなどの演習問題の載っている参考書でも、多くの問題を解くことが目標となります。演習問題を解く理由は二つあり、一つは解法暗記の知識を定着させること、わからない問題に対し試すことのパターンを知ること、またそれを定着させることです。手も足も出ない問題に対処するパターンを知らない段階では手も足も出ない問題の答えはすぐ見るべきです。演習を繰り返すうちにいずれ手と足が出るようになります。そのときからいろいろ試すと解ける可能性が出てくるため、時間をかけて演習する価値が出ます。 ⒈網羅系参考書では答えをすぐに見て良い。 ⒉演習不足の段階では手も足も出ない問題の答えはすぐに見て良い。 ⒊演習して手と足が出てきたら難しい問題も時間をかけると良い。 受験を通して思った個人的な思想なので参考までにしてください!
名古屋大学経済学部 Na
14
7
理系数学
理系数学カテゴリの画像
数学の勉強法について
 数弱で浪人した者です。私は、質問者様が現在の勉強法を継続される事を断固支持します。確かに時間が余計に掛かる道ですが、それで問題を解くのが少しでも楽になる事を体感されているのは素晴らしいことですし、それが正しい勉強法です。  さて、この勉強法で間に合うかどうかですが、定理公式が出てきた度に取り組めば受験に間にあわないなんてことにはならないでしょう。むしろ焦って暗記に走る方が何倍も危険です。受験直前になってもなおうわべだけで分かったつもりになっているというレベルの知識は、入試本番では使い物になりません。そんな知識だけで受験に挑むのは落ちに行ってるようなものです。数学はそんなに甘くありません。数学は身につけるもの、そして、身につけるには自分の手を動かして理解していく事を繰り返すしかありません。証明を忘れてしまったら何度でも復習して下さい。私もこれを幾度となく繰り返しました。また、有名な定理公式の導出方法=証明を知っているとあっさり解ける、なんて問題も整数分野などではよくあります。  一つお勧めは、問題の解答を見てとっぴな解法だなあと感じることがあれば、それは問題の基礎的な部分が分かってない証拠だと疑ってみることです。例えば数学が全くできない人に問題を解説してあげるとき、自分では当たり前に感じている箇所で、"なんでそうやんの?"と聞かれたことはないですか?普段の問題の解説集も同じで、解法が自分にとってとっぴに見えてしまったら、その問題の要求するレベルに達してないと判断して間違いないです。質問者様の質問には直接関係ないですが、私が受験経験から学んだことですのでお伝えしておきます。  学問では回り道に見えることが結局は王道です。私は予備校でそれを痛感させられました。めんどくさそうで遠ざけていた定理公式の証明を自分の手で行なって初めて習得できた実感をえました。質問者様の強みは今すでにこの遠回りの威力を知っておられるということです。どうか自分を信じこの努力を続けて下さい。健闘を祈ります。
東京大学理科一類 taka5691
37
2
文系数学
文系数学カテゴリの画像
11月の数学勉強方法
今は文系学部に通ってますが、もともとは理系だったので回答させていただきます。 一応、理系の頃から数学は得意でしたので、十分回答になりうると思います。 まず入試の数学が解ける、という段階に至るまで大きく3段階あると考えています。 1つ目が、公式を覚えているということです。これは大前提ですね。 2つ目が、各分野において定石と呼ばれる解き方を網羅しているということです。発展問題ができない、という人は大方この部分ができていないと思います。 3つ目が、問題をみてどの分野の問題か理解し、その場の最適な解法を見つけることができるということです。 上記の3段階ですが、大雑把な説明になっているのでもう少し詳細を説明します。 1つ目はまあ覚えてるとして、問題の2つ目ですね。これはどういうことかというと、例えば、数列を考えてみてください。このときに、数列の解法には等差数列、等比数列、階差数列、群数列、数学的帰納法、また漸化式の解法には一般型、特性方程式、n次式型、指数型、連立3項間、分子分母を逆にする、etcといったような解法があります。これを「漏れなく、だぶりなく」身につけて、覚えることが重要になります。このような解き方はその場で思いつくものではありません。逆にこれを漏れなく使えるようになっておけば、問題から解法へのアプローチだけでなく、解法のパターンを思い出していき、問題に当てはまるものを考えていくといったアプローチを取ることも可能になります。このことから単に問題集の解き方を覚えるだけでなく、その単元ごとの全体像を把握する勉強というのが大事になります。なので11月に数学を勉強するようなら、まず第1に入試頻出(特に名大であれば)の微積、確率漸化式、整数論といった単元を優先的にして、勉強するのが良いと思います。このとき、微積をやるなら微積を一気にやって全体を把握するのようにしましょう。focus goldなら各単元を網羅的にしているのでいい問題集です、ただやる問題は例題だけで十分だと思います。 11月中に3つ目に行くことは相当なペースでやらない限りないかと思いますが、今後の勉強法のためにも書いておきます。 3つ目は発展問題、いわゆる入試問題を見て、どの解法で解くかを身につける練習です。このとき先ほど言ったアプローチを身につけるとともに、わからなかった問題や、なんとなく解けた問題に出くわすこともあると思います。このとき解き方を覚えるだけでなく、その問題文をよく読み、その文章や書いてある数式からどんな解法を使うかを見つけられるようにします。例えば、数列の問題でnは自然数とする。と書いてあるとしましょう。この一言だけで数学的帰納法を使う可能性があがります。もちろん必ず使うわけではありませんが、解答の糸口になるかもしれません。このような勉強が重要になります。また自分がよくやった方法は、一度解いた後にその問題に自分なりの題名をつけ、一言でまとめるということです。そしてその一言を見れば解法が頭の中で浮かび上がってくるような名前をつけましょう。例えば、n=1,2を基にして解く数学的帰納法を用いた背理法の証明問題。と名付けたとしましょう。これだけで背理法で仮定をして、n=k,k 1を使った帰納法であることがわかります。これはあくまで自分の例ですが、こうすることで簡潔に頭の中で整理されます。 上記の勉強方法はあくまで自分の勉強方法なので、万人に当てはまるものではありません、しかし1つの例ではあるので参考にしてもらえれば幸いです。 本番までまだ4ヶ月もあり、十分逆転は可能です。最後まで頑張って第1志望の大学に合格されることを願っています。頑張ってください、応援しています。
京都大学経済学部 フランダー
47
2
理系数学
理系数学カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像