UniLink WebToAppバナー画像

数学の証明に強くなりたい

クリップ(22) コメント(1)
7/2 14:35
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

さめちょん

高1 愛媛県 九州大学文学部(60)志望

中高一貫校の高一です。 自分は去年から高校数学を習っているのですが、本当に数学の証明ができません。 今年の4月から通信制の大手予備校で最初から数学を習っていますが、証明をほとんど教えてもらっていませんし、学校でも、数学の受け持ちの先生が受験生も教えていらっしゃるので、質問をなかなか出来ない状態です。 そこで、こうすれば独学でも上達できる、この参考書なら証明のやり方がわかりやすい、等ありましたら、教えて頂きたいです。 どうかよろしくお願いします。

回答

回答者のプロフィール画像

31

京都大学農学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
はじめまして。 問題を解くことは出来るけれど、いざ証明するとなると何から書けばいいのか、またどういうことに注意すればいいのか分からないという人に向けての話をします。問題が解けるのが前提です。 証明に必要なのは能力は2つあると私は考えています。それは、描写力と同値変形力です。以下で詳しく説明します。 1つ目、描写力。 これは証明に限らず多くの数学の問題にも必要なことですが、自分の頭の中で想定されている内容は答案用紙に過不足無く表現しなくてはいけません。たとえ頭の中で正しい道筋が出来ていてもそれが反映されていないと点数にはなりません。もちろん分野によってある程度パターンはあるので、問題演習を通して訓練していく、というも大事ですが、もっと一般的なコツがあります。 結論から言うと、図示してみることです。文字列は情報を1次元的(正確には1次元では無いので、私は1.5次元と勝手に呼んでます)にしか伝えられません。しかし図示して2次元にすることで、情報の密度や見やすさが段違いになります。とりあえずわかりにくい内容だったり、混乱してきたりしたら図を書く癖をつけましょう。図を書くことで分かりやすくなるのはもちろん、情報が整理されて見通しが良くなることもあります。答案用紙の場所をとると思うかもしれませんが、長々文章を書くことを考えると慣れればかなりコンパクトな答案が書けるようになります
申し訳ないですが、この力が身につくおすすめの参考書は一概に提示出来ないです(分野を跨ぐことなので)。しかしあとでも触れますが、標準問題精巧シリーズは図示を駆使したかなり見やすくてためになる回答が多い印象です。苦手な分野を中心に見てみてください。 2つ目、同値変形力。 いわゆる必要十分条件を揃えることです。よく最後に「これらの答えは与えられた条件を全て満たす」を書き忘れた、などと聞きますが、これらは必要十分がちゃんと把握出来ていないからです。それが出来ていれば描き忘れることはありません。 そもそも必要十分とは、与えられた条件に対して今求めた条件が大きくなってないか、あるいは小さくなっていないかを把握する作業です。与えられた条件より大きい条件では答えを満たさないとこもあるし、問題ない時もあります。それを把握するには必要条件とはなにか、十分条件とは何かをちゃんと理解していないと行けません。 多分ここで色々説明しても混乱するだけだと思うので(私も正確に説明しきれる自信がありません)、おすすめの参考書を紹介します。分野別標準問題精講シリーズの「軌跡・領域」です。軌跡・領域分野はただ与えられた条件を同値変形して出た答えを図示するだけというシンプルに演算能力を問うてくる分野です。従ってこの分野をしっかり学べば必要十分の理解が深まり、同値変形力が身につきます。そしてこの参考書(問題集)は必要十分をかなりの基礎からしっかり分かりやすく説明してくれます。1つ目で話した図示するコツも教えてくれるのでおすすめです。 上の2つの点を理解して、参考書や問題集にしっかり取り組めば、証明の記述に困ることはなくなると思います。ただ一番初めにも書いた通り問題自体は解ける前提なので、変形過程は置いておいてそもそもアプローチが何やってるか分からないという時は、その分野の基礎をしっかり学び直しましょう。 以上です。 コロナのせいで色々煩わしいことも多いとは思いますが、頑張りましょう! 応援してます。
回答者のプロフィール画像

31

京都大学農学部

69
ファン
12
平均クリップ
4.7
平均評価

プロフィール

物化選択で、センターは地理です 二浪して受かりました 人よりは辛くて長い受験生活を経験しているのでその分色々な話が出来ると思います たまに顔出します

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

闇属性のプロフィール画像
闇属性
7/2 17:23
ありがとうございます! 次の模試に活用させて頂きます。

よく一緒に読まれている人気の回答

証明問題について
はじめまして。 証明問題は苦手な人が多いです。なんでか分からないけどめっちゃ減点された、みたいな経験も私にもありました。 ちょっと難しい話になってしまいましたが、無駄にはならないと思うので、参考にしてもらえればと思います。 例えば、「AがBであることを証明せよ」という証明問題があった時に、Aを変形していってBを出します。すなわち普通に問題の答えを出す時と流れは同じです。場合によってはBを少し変形して、アプローチを定めることもありますが、基本的にはこれで解きます。そもそも普通の問題解くときですらアプローチが分からないというのは、証明問題以前に数学全体の理解度が足りていないので、基礎からきっちりやり直しましょう。証明云々はその後です。 ただ気をつけなければいけないことはあります。むしろこっちの方が大事です。 証明問題で求められているのは論証力です。答えを与えている以上、答えを出す能力より論理的に思考する能力が求められます。じゃあその論理性とは何かと言うと、必要性・十分性です。 「AであるときA'となり、A'であるならばB」といった流れで解く時、A'はちゃんとAの条件を全て満たさなければいけません。言い換えると、A'がAの条件を網羅するようにA'を設定しなければいけません。これが必要性です。満たしていない場合、「Aであるとき必ずしもA'とは言えない」となり証明は間違っていることになります。また、A'の条件がBの条件に全て含まれていないと、「A'であるからと言って必ずしもBにはならない」となってこれもまた証明が間違っていることになります。よってA'はBの条件を満たさないといけません。これが十分性です。よくある例としては、a=0となることを忘れて両辺をaで割ってしまって減点される、というのはよく聞きます。これは必要性が失われている(十分性は担保されている)ことになっています。 結構難しい話をしている(ベン図使うとわかりやすい)ので、訳わかんなくなっているかもしれません(多分私も上手く記述できていないかもしれません)。なので、おすすめの参考書を紹介します。これは私が浪人中も使っていたのですが、旺文社の「軌跡・領域 分野別標準問題精講」です。奇跡・領域分野は必要十分が理解出来ていないと点がとれません。必要性あるいは十分性が失われていると答えの図形が変わるからです。この参考書は必要性・十分性を漏らさない演習に特化した、すなわち同値変形の訓練に特化した参考書です。内容は奇跡・領域ですが、この同値変形の能力は数学全般に必要な能力です。特に京大は記述にうるさい大学で有名ですが、何がうるさいかと言うと、他大学だったら見逃す必要性or十分性の漏れを逃さないということです。したがって京大志望者には欠かせない能力です。初めの章では必要性・十分性とは何か、なぜ大切なのか、という話をかなり簡単な問題で説明してくれます。なので、自信がなくてもやる気さえあれば取り組めるようになっているので安心してください。という訳で是非やってみて下さい。 証明終了とは必要性or十分性あるいはそのどちらもが担保されて始めて言えます。なので必要性・十分性をちゃんと理解していないと証明を終了させていいのか分からないままです。よく最後に注意書きを書き忘れて減点、なんてありますが、必要性・十分性をちゃんと把握していればそんなことは起こりません。 メタ的な話として、綺麗に記述できないという時は、グラフなど使うといいです。文字とは基本一次元的な情報なので、意外と情報を込めることが出来ない。ところが2次元になると一気に情報の密度が上がります。なのでグラフの使い方を身につけましょう。上で紹介した参考書はそれも教えてくれます。 また、スペースが足らないなどの問題は、いきなり書き始めるのでは無く、余白に計算をしてどれくらいの分量になるのか確かめる、などがあります。場合分けが発生しているだとか、関数の処理が数回必要などの情報が把握出来ます。整数問題などでも、実際に片っ端から整数を代入していくとアプローチが見えたりします。一石数鳥なので効果はあります。ただあとは、すごく酷いアドバイスだとは思いますが、経験で補うと言うしかない気がします。たしかに解答欄の真ん中に線を引くだとか、こまめに式に番号を振って説明部分を簡略化するなどのコツはありますが、根本的な問題としては経験によると思います。ある程度問題演習を積んでいると、どれくらいの工程が必要か見えてきます。 以上です。情報過多かもしれませんが、とりあえず参考書を手に取って見てみてください。もっと分かりやすく説明してくれてます。 それでは頑張ってください。
京都大学農学部 31
27
1
理系数学
理系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
35
8
文系数学
文系数学カテゴリの画像
数学への苦手意識
こんにちは、僕も高1の頃は定期テストで0点を取るほど数学がダメダメだったので、数学への苦手意識はとても共感できます🥲 しかし以下のような勉強をすることで最終的に数学を武器に合格できたので、お伝えしようと思います! 苦手意識がある高校1年生ということで、過去問とかをやる段階ではないと思うので、割と基礎的なほうの段階についてお伝えしようと思います。 大前提を先に言います。 ①「どんな問題も、解く過程を全て紙に書いて、記述する」 二次関数の頂点を求めよといっためちゃくちゃ基本的なものでも面倒ですが絶対に途中過程を書いてほしいです。 ②「正解した問題は別解を考え、間違えた問題はできるようになるまで繰り返し続ける」 解く引き出しを増やし、解けない問題を無くしましょう。 模試でも同じで、復習の際には、解けなかった問題は絶対に解けるように、合ってた問題は別解がないか考える(楽しみながら!)ことを大切にしてほしいです。 ③「計算ミスは実力だ!!」 計算ミスだから、といって放置しないことです。計算ミスをしたら、どこでミスしたのか探して、最初から解き直しましょう。仮に共テや二次で計算ミスしたら命取りです。本当に数十点飛びます(経験あり)。 ④「解説見てもわからなかったら人に聞く」 学校の先生でも、数学できる友達でも、塾の先生でも、だれでもいいので、わからなかった問題は質問しましょう。放置しないことです。ただし、聞く前に自分で考え抜きましょう!!それでもわからなかったら聞きましょう👍 (1)やった参考書について (2)意識すること (3)これで到達するレベルはどれくらいか (1) まず基礎問題精講をやってみましょう。こんな簡単なのやる意味ある?って思っても、意外と解けない問題ってあります。そういう問題を解けるようにしましょう。基礎問題精講に関しては解けない問題は一個もない!全問すぐに解答を書き上げられる!っていう状態にしましょう。 次に青チャート、FocusGoldといった網羅系の参考書です。これもとても重要で、この先難問に当たったとき、「考える」ための「引き出し・手段」として、必ず身につけなければならないものばかりです。絶対に完璧にしましょう。仮に数学が偏差値60くらいあるとしても今一度やり直してほしいです。意外と解けない問題、あります。 ここは何周もしてほしいです。(ぼくは高2のときに青チャート1A2Bを全問3周しました、このおかげで数学偏差値49→73になりました) 面倒ですよね、、、けど受験勉強は気合いが大事です。やるしかないのでやりましょう。例題と練習問題がありますが、全部やりましょう。 青チャートは、高2,3になっても、模試で苦手分野がはっきりしててー、っていう場合にその分野を全問解く、などしましょうね!!基礎は本当に大事です。 次に1対1です(僕は挫折してしまいました)。 結構難しいです。1A2Bのうち、AとBはいらないかなーと思いました。正直ここは全部やりきれなかった、、でもいいと思います。しかしやれば得られるものはとても大きいです。たとえば、引き出しがとても増えるし、計算が重いので計算力がつきます。ぜひやり抜きましょう。例題と演習題がありますが、他の科目とのバランスがとれるようなら演習題もやりましょう。 (2) ①「本質」「定石」のようなものを意識してみましょう。 たとえば、「二次関数のグラフとx軸の交点は、二次方程式の解」「確率はすべてのものを区別する」「図を描いて考えてみる」「二次関数に帰着する」「〇〇=tと置いたら変域を考える」などです。これは、基礎的な段階でも意識してほしいし、その先の段階(旧帝の入試問題など)でもずっと意識すべきことです。こういう基本的なところで大きく差がついてしまいます。 ②上に挙げたもの“だけ”をやってると、飽きます。そしてつまらなくなります。そんなときは、入試問題や模試の過去問を解いてみましょう。オススメなのはセンター数学です!(共テじゃなくてセンター!) センター数学は基礎力を測るにはとてもいいものです。たまーにやってみましょう。時間も計りましょう。ここで注意点ですが、選択問題もありますが、時間測るときは選んでいいですが、その後選ばなかった問題も解きましょう!大きく意味があるものになります。 ③目的意識を持って勉強しましょう。「受かるため!」というものではなく、たとえばこの勉強であれば、 「苦手分野をつぶす」 「応用問題を考えるための引き出しを増やす」 「基礎を固める」 といったものです。 ④「引き出しを得る」ためのものですが、基礎的な問題、特に二次関数以降の分野においては、常に「考え」て解きましょう。①を意識するような感じです。 ⑤細かいことを意識しましょう。たとえば、 「分母に文字や式が出たら、分母が0にならないか確認する」 「〇〇=tとおいたとき、変域を書く」 「判別式は二次方程式にしか使えない(2次の係数が文字のとき、(文字)=0のときを確認しているか)」 などです。今の段階から意識しましょう。こういう細かな点が、入試や模試の採点の大事な要素となっていますし、数学を「考える」大事な要素です。 (3) ここまでやれば、進研模試でいえば偏差値70〜75まではいきます。旧帝大のやや易〜標準レベルの問題を、時間はかかるけど解けるようになります。一橋志望ということでもっと高いレベルを目指してほしいですが、焦らず、まずは基礎を固めることです。地に足つけて、ぜひ頑張ってください。
京都大学教育学部 くま
9
2
不安
不安カテゴリの画像
数学を得意科目に
はじめまして! 解答を見ても解き方がわからない場合は、その問題が自分のレベルにあっていないのかもしれません。もう少しレベルを落として、自力では解けないけれど、解答を見たら理解できる問題(同じ分野のもの)に取り組んでみてください。 様々な問題に対する向き合い方についてまとめてみました! 1.解答を見ずに自力で解ける問題→既に身についているから何度も解く必要はない。 2.自力では解けないけど解答を見たら理解できる問題→解答を見て理解した上ですぐにもう一度といてみる(解答を見ずに)。数日後、自力で解いてみる。これで解けたらもう身についています!解けなければ、もう一度解答を見て解く、数日後自力で、、、を繰り返す。 3.解答を見ても理解できない問題→自分のレベルにあっていない可能性があるので、レベルを落とした問題に取り組んでみる。また、解答の中で分からない部分はどこなのかを明確にして、学校の先生や塾の先生に質問する。 自分のレベルアップに大きく貢献するのは、2の問題です!この問題をきちんと自分のものにしたら、次のテスト等で出題されたら自力でとけるはずです! ただ、やみくもに解答を丸暗記するのでは意味がありません。(似た問題への応用の幅が狭くなってしまいます! ) 解答を見て理解する際には、解答の中のポイントをしっかり掴むことが大切です。 例えば絶対値と整数が等式で結ばれた方程式を解く際は、両辺を二乗して解きますね。この場合、「絶対値の計算では二乗する」ことがポイントです。 もちろんひとつのことに対してポイントがひとつとは限りません(むしろ、たくさんポイントを持っているととても強いです!)。 また、人によってポイントと思う部分は違います。自分がポイントだと思ったところにに蛍光ペン等で線を引いて、そのポイントを覚えてください! 数学は覚えるだけでなく、多様な問題を沢山解くことで徐々に力がついて行く科目です。勉強し始めてすぐには結果は出ないと思います。 ですが、あきらめず地道に頑張ってください!絶対にいつか結果になります!! 時間は有限なので限りある時間を有効に使いましょう! 応援しています。頑張ってください!!
大阪大学工学部 合格GO
17
2
理系数学
理系数学カテゴリの画像
数学の勉強法について
 数弱で浪人した者です。私は、質問者様が現在の勉強法を継続される事を断固支持します。確かに時間が余計に掛かる道ですが、それで問題を解くのが少しでも楽になる事を体感されているのは素晴らしいことですし、それが正しい勉強法です。  さて、この勉強法で間に合うかどうかですが、定理公式が出てきた度に取り組めば受験に間にあわないなんてことにはならないでしょう。むしろ焦って暗記に走る方が何倍も危険です。受験直前になってもなおうわべだけで分かったつもりになっているというレベルの知識は、入試本番では使い物になりません。そんな知識だけで受験に挑むのは落ちに行ってるようなものです。数学はそんなに甘くありません。数学は身につけるもの、そして、身につけるには自分の手を動かして理解していく事を繰り返すしかありません。証明を忘れてしまったら何度でも復習して下さい。私もこれを幾度となく繰り返しました。また、有名な定理公式の導出方法=証明を知っているとあっさり解ける、なんて問題も整数分野などではよくあります。  一つお勧めは、問題の解答を見てとっぴな解法だなあと感じることがあれば、それは問題の基礎的な部分が分かってない証拠だと疑ってみることです。例えば数学が全くできない人に問題を解説してあげるとき、自分では当たり前に感じている箇所で、"なんでそうやんの?"と聞かれたことはないですか?普段の問題の解説集も同じで、解法が自分にとってとっぴに見えてしまったら、その問題の要求するレベルに達してないと判断して間違いないです。質問者様の質問には直接関係ないですが、私が受験経験から学んだことですのでお伝えしておきます。  学問では回り道に見えることが結局は王道です。私は予備校でそれを痛感させられました。めんどくさそうで遠ざけていた定理公式の証明を自分の手で行なって初めて習得できた実感をえました。質問者様の強みは今すでにこの遠回りの威力を知っておられるということです。どうか自分を信じこの努力を続けて下さい。健闘を祈ります。
東京大学理科一類 taka5691
37
2
文系数学
文系数学カテゴリの画像
数学の証明について
基礎は出来ていますでしょうか? 場合の数や確率は、「どれだけ公式の構造がしっかり理解出来ているか」「自分の力でどれだけ丁寧に思考が出来るか」の2点が重視されている範囲だと思います。 まず公式の理解ですが、正直なところ矛盾するようですが場合の数や確率に公式はありません。この点は多くの学生が見落としていることで、実際確率を難しいと考える人は公式を全部覚えようとしています。例えば、重複組み合わせの公式は、本質的には順列を繰り返し使っているだけです。このようにして公式を細かく分解していき、自分で1から組み立てていけるようにしましょう。この時オススメの参考書は東京出版が出している大学への数学シリーズの「解法の探求・確率」という本です。内容はかなり難しいですが、じっくり時間をかけて理解を進めれば、一通りの公式は理解できるようになると思います。 次に思考練習ですが、これは確率だけの話ではなく、数学全体の問題になってきます。勉強方法としては、難しいめの問題を時間制限をせずに自分の頭で考えることを続けることでしょう。大切なのは、採点官に見せるつもりで記述をしっかりつくることでしょう。採点をする時に自分のどこに思考の穴があったのかがはっきり分かります。出来れば学校の先生に見てもらってもいいかもしれません。まずはプラチカ辺りから確率に限らず、数学の全範囲を対象にして手を付けてはいかがでしょうか。 最後にどの方にもお伝えしていますが、今は基礎をしっかり固める時期です。基礎を勉強することに手を抜かず、ゆっくりでも確実に勉強していくのが大切ではないでしょうか。 長文駄文失礼致しました。これからのご健闘をお祈りしております!
京都大学経済学部 Ikahige
8
0
理系数学
理系数学カテゴリの画像
数学の勉強の仕方 高校数学が苦手
⑴ 数学を学ぶことの目的は何か  およそ勉強をするにあたって、今自らが学びつつある学問が目的としているものが一体何であるのかを明確にすることは、いかなる内容の学習の際にも必要となる基本中の基本事項です。というのも、それがわからなければ、教えられることや教科書に書いてあることを暗記するよりほかに学習のしようがなく、結局いつまでたってもその学問について理解できる段階には至らないのは当然だからです(この勉強における目的意識の重要性については、末弘厳太郎先生の著書を読んだときに大いに感銘をうけた部分であり、私の勉強観の根幹を成しています)。  ことに高校数学に至っては、その目的は「数学的に思考する力の涵養」であると言えましょう。微分や積分、指数対数、三角関数など、日常生活でこれらの知識が生きることはまず少ないでしょうし、ともすると、それらをはじめ数学的な知識の習得が目的としてあるとは考えにくい。にもかかわらず、数学において数学的な知識を習得させられるという実態を考慮すると、数学的な知識を習得することは目的ではなく手段であり、真なる目的は、与えられた問題をそれを使っていかに解決していくかという段階にあり、すなわち、数学的に物事を考えて問題の解決に取り組むその能力を養うことにあると考えられます。模試などの記述問題でも、解答部分よりもそれを導き出すまでの過程を重視して採点されることと思いますが、それもこのことを証左しているのではないでしょうか。  では、数学的に物事を考えるとはどういうことをいうのかと問えば、(私は専門家ではないので適切な答えであるかどうかは定かではありませんが)それは恐らく、その場に適切な規則、原理(いわゆる定理や公式)をうまく活用して問題の解決を図ることだ、と考えられるでしょう。この点で数学は、事実を基にその場その場に適当な法理を見出し、それを使って問題の解決を図る法律学と似通っている部分があると思います。ただ、両者を決定的に異なるものたらしめる点は何かというと、裁判官による法理の解釈によって結論に一定の幅が出る法律学に対し、数学の規則は常に客観的に不変であるということ。これが、かえって数学における問題解決を簡単にする場合があるということです。 ⑵高校数学の学習態度  脱線が過ぎました。このように考えてみると、公式や定理を理解し、頭に入れることは単なる手段であり、実際にこれを活用できなければ意味がないということがわかるはずです。したがって、数学学習で最初に努めるべきは、公式・定理の理解です。数学Ⅱ、数学A、数学Bをこれから先取りで学習しようと考えていらっしゃるようですが、これらに限らず、現在学んでいる数学Ⅰについても基本は一緒です。まずは教科書に出てくる公式や定理を理解することを心がけるとよいと思います。教科書にはそれらの証明、すなわちなぜその定理・公式が成り立つのかについても書かれていると思いますので、自分で証明でき、また人にそれを説明できるほどになれば立派なものです。  単純に暗記するだけでは危険です。受験勉強ではとかく効率が求められがちですが、そうやって小さな部分を見落としても、本番でそれが問われて見事に足をすくわれるなんてことはざらにあります。いつしかの東大ではsinθとcosθの定義と加法定理の証明が、いつしかの阪大では点と直線の距離を求める公式の証明が出題されています。定理や公式を真に理解していれば、いずれも貴重な得点源となってライバルたちを出し抜くことも成し遂げえただろう問題です。こういった問題は、いつどこで出題されるか分かりません。 ⑶問題演習の取り組み方  さて、公式・定理を頭に入れるためには、同時にそれを正しく使える力も養う必要があります。上述したように、高校数学の目的は「数学的な思考能力の涵養」であり、いくら公式や定理を頭に入れてもそれを正しく使えなければ問題解決は難しくなります。なので、同時に問題演習にも取り組みましょう。最初は教科書に載っている基本例題から、だんだんと練習問題、章末問題、そして問題集の応用問題へと段階を踏んでいきます。問題演習を通じて、どういったところでどんな規則がどのように使えるのか、またなぜそのように使えるのかということを自分自身で見極めることを心がければ、複雑な問題にも対応できるだけの発展的な思考はおのずと身についていきます。 ⑷問題集  チャートについては、使ったことがないので色と難易度の関係などよくわかりませんが、高校1年生の初期から使うくらいですから、Focus GoldやNew Action(名前はうろ覚え)などと同じようなものだとしておきます。私の高校では、日々の課題は教科書や学校の問題集(4STEP)、長期休暇の課題として
北海道大学法学部 たけなわ
3
0
文系数学
文系数学カテゴリの画像
記述模試は取れるのに共通テスト模試は取れない
初めまして。rockyyyと申します。 共通テストの数学と現代文の勉強の仕方について僕が思うことを書いておくのでよかったら参考にしてください。 まず、現代文についてですが、意識することとしては次の3つのことを僕は心がけていました。 ①この段落はなんの説得力持たせるためのものであるのか ②接続詞から、どのような話の流れでどこが重要な部分であるのか予想する ③結局、この現代文全体で筆者は一番何を伝えたいのか ①については、現代文を読む上で結構大事なことかなと思います。僕は高校時代、現代文は適当に全ての長文を読んでから問題に取り組み、「大体の話の流れはこんな感じ」というくらいしか現代文全体の構造を理解していませんでした。しかし、「この段落は、この文の説得力を持たせるためにあるのか」と話の流れを理解しながら読むと、全体のながれが掴めて、内容の理解がとてもしやすくなりました。 また、僕は現代文の文章中に自分なりにシャーペンで文同士の関係性を書き込みながら読んでいました。そうしておくと、あとで問題を解いているときに、自分の現代文を読んでいた時の自分の理解を再認識しやすいのでお勧めです。 ②はみんなやっていることかもしれませんが、これも重要です。接続詞に注目することで大事なところや、そこまで重要ではない部分が区別できます。例えば、「つまり」や「だから」の順接はこれまでの内容を踏まえてまとめるところ、「例えば」はこの部分の前の内容に対して説得力を持たせるために具体例をあげるところなどといった感じです。また、これは個人的な感覚ですが、「しかし」などの逆説がある箇所は現代文全体において、筆者が重要なことをいう時によく使われるので逆接が現れた場合は注意して読むといいと思います。 ③は問い方はどうであれ、必ず問題で聞かれることです。結局筆者はこの現代文全体で何を伝えたかったのか、何を言いたいのかを全体文を読み終えた後に自分なりに言葉にしておくと良いと思います。そうすると最後あたりの問題で全体内容に聞かれても、間違いの選択肢を除外しやすいと思います。 あとはひたすら演習を積んで、無意識的に話の内容が掴めたり、この文章で何が言いたいのか、これはどういうことを伝えたいのかということがわかるようになれば良いと思います。①から③のことを意識して、あとはひたすら演習を積むことをお勧めします。共通テストは慣れが非常に重要な要素なので、たくさんやりましょう。 続いて、数学についてです。 数学の勉強法において、記述テストも共通テストでも、最も重要なことは解法を見ながら理解することであると思っています。一度間違えた問題の解法を完全に理解しないままにしておくと、同じ問題に何度向き合っても解けないままです。なので解けなかった問題に関しては、解説をよく読み、理解することを重要視すると良いと思います。 具体的にどのようなことをすればいいのかというと、僕は解説を最初から最後まで逐一理解しながら読み進めていくことが良いと思います。 例えば、 「ここで、次のように式変形する。」と言ったような文言が出てきた場合、「なんかわからんけど、そう式変形するのね」と考えるのではなく、「なんのためにその式変形をするのか。その式変形でなんの得があるのか」ということを考えるということです。そうすると、「この式変形をすることで、このような操作が可能になるのか!」とか「こう式変形することでこの法則が使えるようになるんだ!」などの発見があるのではないかと思います。それを繰り返して、その問題の解法を完全に理解すると、その問題に対してだけでなく、似たような問題にも同時に対応できるようになると思います。「ここで、この法則を使いたいから、前学んだみたいにこうすることで・・」と言ったような感じで対応できてくるのではないかと思います。僕はそうして学んだ知識をノートに書き留めておき、チラチラ日常的にみるようなことをしていました。 そうすると、実際に数学において、未知の問題(自分が解いたことのない問題)に対しても、その問題を解くための様々な手法を思いつくようになり、それを使って解くことができるようになりました。成績も伸びて、数学がより楽しく、そして勉強が楽しくなったことを覚えています。 なので、数学の問題を解くことにおいて大事なことは、最初は解けなくても良いので解法を読んで、「こうすることでこの解法が使えるのか」ということや「こうすることでこの公式が使えるのか」となることが重要です。それを自分の言葉でノートなどにまとめておくとさらに良いと思います。僕は問題を解いてわからなかったため空いた空白に色ペンで「このようにすることで、この公式を使って問題が解ける」と言ったようなことを書いていました。よかったら実践してみてください。 そして、共通テストで必ず気にする要素として時間配分です。共通テストは時間さえあれば解けたのにとなる問題がほとんどなので、解くスピードをあげることが重要です。僕は解くスピードをあげるために過去問や問題集をひたすら解いていました。慣れると次第に早くなるので、たくさん問題を解きましょう。 とりあえず以上になります。拙い文章ですません。よかったら参考にしてください!応援しています!
大阪大学工学部 rockyyy
7
1
模試
模試カテゴリの画像
今から数学の偏差値を10あげることは可能なのか
 1.問題の考え方がしっかり身についているか確認  2.身に付けた考え方を応用問題に反映さへる練習 の2つを順にしっかり行うと良いです。おそらく数はこなしていると思うので、問題に対する考え方がちゃんとできているかどうか確認するだけで確実に点数は伸びます。大丈夫です。 まず、青チャートの全ての例題の問題の解き方が口頭で言えるかどうか確認してみてください。大事なことは各問題の筋道が見えるかどうかを確認することなので、あまり計算はせずに、時間をかけずに口頭で確認した方が良いです(確率や帰納法を使った証明など、ある程度計算しないと筋道が見えない問題は計算して大丈夫です)。たとえば、  ・ある複素数の問題→図形的な処理が必要&複素数のn乗の計算が出てくるので、z=A(cosθ+sinθ)と置いて解き進める  ・ある積分の計算問題→置換積分でルートを外す  ・ある数列の問題→階差数列に変形して一般項を求めた後、元の数列の一般項を求める  ・ある関数の問題→xの二次の係数がaなので、aの値を±, 0で場合分けして考える などのように簡単に確認すると良いです。このとき、理解度ごとに問題番号の上に印を付けると良いです。たとえば、  論理的に考え方が言えた→☆  考え方が言えた→◯  考え方を説明できないけど解けそう→⬜︎  全くわからない→× という具合です。 ×がついた問題は、もう一度解き直し&考え方の習得を図りましょう。 ⬜︎がついた問題は、ペーパー上の手グセによって解けているだけですので、しっかりと考え方を身につけましょう。 ◯がついた問題は、なぜその考え方になるのか、基礎知識と結びつけてみましょう。先ほどの一つ目の問題の例で言うならば、  複素数をz=A(cosθ+sinθ)と置いて解いたのはなぜか →複素数の掛け算の図形的意味を捉えやすい&ド・モアブルの定理が使えるから と言う具合です。 こうして、全ての例題が☆あるいは◯になれば、弱点は消えます。 これをするだけで、だいぶ数学の力は上がります。 あとは、今までに受けた模試(今年)の問題, 一対一対応の問題を実際に手を動かして解いてみて、ひたすら身に付けた考え方を反映させる練習をしましょう。問題文を読んで、 「aという条件でbを求めるのであれば、筋道はcという考え方で、その中でdという考え方を使えば良いな」 というように、考え方がクリアに浮かぶことが理想です。わからなかったとしても、解説を見て、使われている考え方は既知のものであることを確認して吸収することが大事です。 また、理科大は数3の微積分で難しめの問題が出ることが多いので、微積の計算演習は特に積むべきです。頑張ってください!
慶應義塾大学理工学部 LiLi
42
3
理系数学
理系数学カテゴリの画像
数学の勉強仕方について
こんにちは 進研模試であれば、青チャ、FocusGold、1対1の例題レベルでカバーできます 毎回「問題文の条件を全て数式化する」ことと、「答えまでの道筋」に深い注意を注ぎましょう きちんと数式化(いくつかの選択肢の中から選ぶ場合もあります)したものを、どう使って解答まで導くかというプロセスの""きちんとした理解""が数学の学力を上げてくれます 三角関数の最大値最小値問題文であれば、「最大値最小値問題なら不等式か、文字で置いて二次関数に持ち込むのが良さそう とりあえず倍角は普通の角に戻して、あ、普通のsinとsin^2があるからtでおいて二次関数に持ってくかな」など考えられればいいです 1つ1つの理解ができていれば、計ゴリ以外の難問と呼ばれるものは個々の問題の複雑な絡み合いなので、1つ1つ丁寧にほぐしていけば見通しが良くなります 焦らず、様々な問題設定での自然な発想を可能にするために、網羅系問題集の例題などは全て理解するよう努力するのが良いと思います!!
早稲田大学先進理工学部 エムジェー
9
0
理系数学
理系数学カテゴリの画像