UniLink WebToAppバナー画像

数列の問題に出てきた式の変形

クリップ(4) コメント(2)
8/27 22:57
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

たると

高卒 神奈川県 東京工業大学志望

Σ[1→n-1]C[2k,2] = Σ[1→n-1]2k(2k-1)/2 この変形がわかりません。 何か公式を使うのだったら教えていただければ嬉しいです。

回答

回答者のプロフィール画像

たまちゃん

東京工業大学第三類

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは!東工大一年のたまちゃんです。 C[2k,2]=2k(2k-1)/2 これは公式ですので覚えてください。 一般に、 C[m,n]=m!/{n!(m-n)!} が成り立ちます。
回答者のプロフィール画像

たまちゃん

東京工業大学第三類

172
ファン
15.6
平均クリップ
4.5
平均評価

プロフィール

東工大のたまちゃんです。 よろしくお願いします! なんでも質問してください!! 物質理工学院に所属しています。 ファンのメッセージの方を重視してるので、あまり相談の回答はしないかもです

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(2)

たるとのプロフィール画像
たると
8/28 1:37
Σの計算に少し苦手意識があって、Σが付いているから勝手に難しいだろうと思い込んでて当たり前の事に気づきませんでした💦💦 教えて頂けて助かりました! ありがとうございます😊
たまちゃんのプロフィール画像
たまちゃん
8/28 8:24
そういう事でしたか。 お役に立てて何よりです。

よく一緒に読まれている人気の回答

センター数学
センター試験の集合は、実数の集合を扱うことが多いため、数直線上に図示するのが有効なことが多いです。 目盛の間隔を正確に図示する必要はなく、それぞれの端の大小と、黒丸白丸があっているかが重要です。(黒丸の場合はその点を含む、白丸の時はその点を含まないことを表します。不等号に=が入っているかどうかの違いとも言えます。) 例えば、 p: x>1 q:x≦2 のように与えられていた時、右向きの数直線上に左から1と2の点を書きます。 pについては、x>1(つまり「xは1より大きい」)であることから、先ほど書いた1の点に白丸を書き、そこから右上がりに少し直線を書き、そこから右向きに直線を伸ばします。新幹線のような形になります。この形は、1の点を含まないことを表すもので、白丸と同じ意味ですが、ぱっと見で分かるように両方使います。また、この線がpであることをどこかに書いておいてください。 qについては、x≦2(つまり「xは2以下」)であるので、2の点に黒丸を書き、そこから真下に少し直線を書き、左向きの直線を伸ばします。こちらは、電車のような形になります。この形は、2を含むことを表すもので、黒丸と同じ意味です。こちらの線にも、qであることを書いておいてください。 このように、範囲を一つ一つ図示していくと、次のようになります。 _______________ p / 2 ---------○-----●------->x 1 | q --------------- これを見れば、「pかつq」や、「pまたはq」「p⇒q は真か偽か」はすぐに分かるはずです。たとえば「pかつq」なら、pとqが重なっているところなので、1<x≦2になります。「pまたはq」ならば、pとqの少なくともどちらかがある範囲なので、xは全ての実数になりますね。「p⇒qは真か偽か」については、pの中にqが含まれていないので、pならばqとはいえません。よって、偽となります。 上図の縦棒や斜め棒の長さを条件ごとに変えれば、一つの数直線にもっとたくさんの条件を書き込めます。そのようにして、一つの数直線に与えられた条件全てについて書いておくと、かなり簡単になると思います。 また、「(pかつq)または(rの否定)」といわれたときは、pとqとrとは別に、「pかつq」や「rの否定」についても書くと、分かりやすくなります。 加えて、たまに、条件式をそのまま使うと面倒くさいことがあります。そういう場合は、対偶を取るのが良いです。(そこまで多くはないし、絶対になければ解けないわけではないため、これ以後ついては忘れても大丈夫です) 「p⇒q」と、「(qの否定)⇒(pの否定)」(対偶)は同じ意味です。また、[(aかつb)の否定]と[(aの否定)または(bの否定)]は同じ意味です(ド・モルガンの法則)。これらをつかうことで、 ・「または」を「かつ」に変換できる ・aやbの代わりにaの否定やbの否定を使える という利点があります。このような利点が使えそう!と思ったら使ってみてください(とりあえずわかんなかったら対偶とってみる、っていうのも一つの手ではあります)。 ※(rの否定)などは、本来はrの上に横棒を書いて表します 至らないところもあったかもしれませんが、貴方の合格を願っています。それでは。
早稲田大学先進理工学部 ROX
19
0
文系数学
文系数学カテゴリの画像
2次数学との間
こんにちは。九大医学部のものです。2次数学の問題を解けるようになるためには、ある程度の慣れと深い理解が必要になってきます。 問題には大抵決まった形式があります。点の存在範囲の問題であったり、漸化式の問題であったり、それらはある程度パターン分けすることができます。 それらを経験していくことが大切になってきます。 そのためには、問題のパターンをある程度知る必要があり、多く良問を解いていくことも必要です。 私は月刊大学への数学であったり、過去問を解いたりしていました。 しかし、完全に暗記すれば良いという訳ではありません。定石を知り、自身で定石を考え、問題を分析すると同時にその論理展開が何故なされたのかということを自分で考えることが大切になります。そうすることで、様々な問題に対応できます。 2次数学をとくには実践的に問題演習をして、その問題について分析することが必要不可欠だと思います。 頑張ってください!
九州大学医学部 sei108
0
1
文系数学
文系数学カテゴリの画像
問題集の進め方
こんちには! 現役東工大生のものです。お答えします! 基本的にはそのやり方でいいと思います!! ただ、関連する単元をやるとなると、かなり時間がかかってしまいます。新数学スタンダード演習自体、けっこうな問題数ですので、効率よく回すために次のようにしたらどうですか? スタンダード演習で間違えた問題は、対応する問題を一対一対応で探す →その問題をやってみる できなかったら基本パターンを覚えられていないということなのでしっかり理解して覚える。 できたとしたら、それはその問題の解法を覚えてしまっているのかもしれません。 しっかり本質の部分を理解し、スタンダード演習の問題は「どう応用しているのか」、「どこに着目すればそのパターンだと気付けるのか」を意識して、復習すると、受験のときに必要な応用力が付いてくると思います! 大事なことはできなかった問題が、なぜできなかったのかをしっかり考えることです! 知識不足なのか、ここを見て気づかなきゃいけなかったのかといった具合です。 数学の問題は必ずヒントがあります。そのヒントから今までの知識をどれだけ引っ張り出して正解までたどり着けるかです。 やれば必ず結果はついてくるので頑張ってください!! 目指せ東工大👊
東京工業大学第五類 あっちゃん
9
2
理系数学
理系数学カテゴリの画像
数学共通テスト
質問答えます🙋‍♂️ 逆に言えば二次試験の方は共通テストに比べて流れを考えながら解けてるってことだよね! 共通テスト演習が少ないとまっちゃぷりんさんが言ったように「問題を解いている時に空欄を計算しているだけの状態なって、改めて流れが必要な問題に差し掛かった時にこれがどういう問題なのかわからなくなる」っていうことはよくあるよ! よくあるっていうかみんな最初はそんな感じなくらい。 でも普段の数学力がちゃんとある人は問題数をこなしていくと傾向が掴めてくるから、自然と何やってるのか分かるようになってくる!時間配分が体に染み付いてくるまでいくつもこなそう! 共通テストは基礎力と慣れのテストです。 今基礎力はある程度あると思うから、あとは慣れるだけ!! 1ヶ月間みっちり練習を積めば必ず成績は伸びます!! 頑張って!
東京工業大学物質理工学院 yuya
12
3
文系数学
文系数学カテゴリの画像
公式の証明
こんにちは!東北大学文学部のkitaです! お答えさせて頂きます! 理想としては、教科書で習った公式は証明できないといけません。 大学の先生に、参考書にあったよね?と言われても知らん!と言えますが、教科書でやったよね?、と言われたら何も言えません😅 ただ、全てを意味もなく丸暗記するのはナンセンスです。 そこで、僕が実際に行っていたのは、何度も出る公式(使用頻度が多い)や、今までに他の大学も含め問われたことのある公式、は必ずやりました! 例としては、正弦余弦、加法定理、点と直線の距離公式、積分の面積公式あたりが王道でしょうか。 他には、僕は数学が好きだったので、ちょっと勉強に疲れた時に、息抜きとして公式の証明を調べて、エレガントな証明方法があると感動してました(笑) 数学の定理や公式の証明は、1つの証明にさまざまな知識を必要とします。それなので、基礎がないと自力で行うのが難しいですし、逆に出来るようになるとかなりの数学がついた、と言ってもいいでしょう。 質問の的確な答えになっているか分かりませんが、入試に出るかも大事ですが、その定理や公式の根本を知ると、間違いなく入試に役立ちます! 最後に、たくとさんの目標が達成されることをお祈りしています。頑張ってください!!
東北大学文学部 kita
9
5
文系数学
文系数学カテゴリの画像
数学の伸び
また失礼します 数列と確率が解けないということですが、まず数列に関して 数列は高校数学の分野の中でも難易度が上がるほど見慣れない条件、漸化式がだんだん出てきます つまり現場での【実験】の要素がだいぶんに多いです なのでこれはゆっくり時間をかけて、解説を理解して素養を深めていけば良いでしょう 確率、場合の数は設定は変わってもやっている作業は限られてくるので、この操作なら同様に確からしいからこの式つかう、これは余事象でやったほうがよさそう、これは反復試行などのことはすぐ見抜けるようにし、また自分の解答で何を区別し、何を区別していないか(または全て区別する)を毎回意識しながらやれば段々アウトプットもよくなってきます また基礎固めで使っていた問題集、書き出さなくてもいいので問題見て解法を頭の中でいう練習は最後まで続けましょう きちんと書くわけではないので短時間で多くの問題に触れられます 計ゴリ以外の難問は多くの場合基礎固めで用いたパターンの組み合わが複雑だったり文字の条件がごちゃごちゃ入ってきたものになるので、その個別個別は完全に、解説書をかけるレベルまでの理解をお勧めします というか各問題の解説を自分で作るのが一番効果的ではあるので、特に理解が不十分である個別の要素が多く含まれてモヤモヤする問題は一寸の箇所にも理解の妥協をせず自分の言葉で解説するのが良いでしょう 頑張ってください🙏
早稲田大学先進理工学部 エムジェー
14
0
理系数学
理系数学カテゴリの画像
一橋数学の勉強と共テの兼ね合い
こんにちは! 現在一橋大学社会学部1年の者です! 私は社会学部なので必ずしも商学部と同じ勉強方針ではないかもしれませんが、何か参考になる部分があればと思い答えさせていただきます🙇‍♀️ ちなみに当日の数学の得点率は55%くらいでした。 共テと2次試験の対策(特に数学)の勉強の比率についてですが、共テは慣れの部分があると思うので直前に解きまくれば結構即効性があります。現役の時は冬休みくらいから本格的に共テ演習に移行し、浪人の時は年明けから移行して、それぞれ82%、86%くらいでした。(本格的に移行というのは完全に勉強時間の全てを共テに費やすということです。それまでは共テの対策では、共テのみの科目の復習や授業で解く演習問題、共テ模試だけだったのであまり自分で共テ演習のための時間をとっていませんでした。) ベストの比率は質問者様の状況によりますが、意外と共テは直前でもなんとかなるので、心配なら2次試験の数学をやるので計画的には全然問題ないと思います。共テ演習に移行したら2次試験の対策に戻らずそのまま共テの形式に慣れて本番がいいのかなと思います。(共テと2次試験の対策を並行してやるのは私はやってないのでなんとも言えませんが、中途半端になりそうな気もします)ただ、2次試験で使わない古文漢文や共テ科目の社会、理科基礎の暗記や総復習は、これまでどれほどやってきているかにもよりますが、12月すぎから始めておきましょう。 また、2次試験数学の整数分野について、私は一橋の整数は慣れだと思っています。慣れというのはただ解けば得点が伸びていくのではなく、はじめの発想や途中からの考え方の似たような問題が出やすいからそれらの解法を覚えていくのが良いということです。 私も最終的に3完を目標にしており、整数は取りたい大問の1つでした。前提として、整数問題の基礎ができている必要があります。もしまだ理解が不十分な部分があれば、チャートなどの基本的なレベルの問題を解きましょう。基礎は分かるけど過去問になると解き方が分からないという場合は、過去問を整数に絞って解いて解法を覚えましょう。最初は普通に解いて詰まったら解答を確認して、覚えててもいいのでもう一度解く。数日後にも復習として解き直さなくてもいいので確認する。ひたすら解き慣れていきましょう。 共テ数学も、基礎と慣れが重要だと思っています。こちらはより基礎が重要だと考えています。なぜなら、共テ数学の演習量が多かった現役の時よりも、少なかった浪人の時の方が得点が安定して高かったからです。浪人時は基礎を一からやり直せていたので、数学の基礎的理解が深まっていました。その差が点数の差につながりました。あまり基礎が固まっていないうちに過去問や予想問題演習をしても得点の伸びに限界があると感じるので、焦らず基礎を復習した後、共テの形式に慣れるのが良いと思います。 あくまで私の一意見に過ぎませんが何かお役に立てれば嬉しいです! 勉強頑張ってください📣
一橋大学社会学部 ねこ先生
3
2
文系数学
文系数学カテゴリの画像
数学1a2b
こんばんは、名古屋大学医学部医学科のメイメイといいます。 基礎問題精講&予備校テキスト(基礎を固めるためのもの)→1体1&ハイレベルテキスト(応用力をつけるもの)→はっ確(特定分野のさらなる得点力upor苦手分野の解消)と、だいぶいい流れでいけると思います。 この後すぐに過去問演習に入っても実力的には申し分ないと思いますが、もし時間が余ってしまったとかさらにトレーニングしたいのでしたら「やさしい理系数学」をオススメします。 やさしい理系数学はやや難~難程度の問題を分野別に載せた問題集です。すべてやらなくても、得意分野だけ解いてさらなる力をつけるのにもいいと思います。 時間があまりないのでしたら過去問演習に入っちゃっても大丈夫だと思います!!
名古屋大学医学部 メイメイ
4
3
理系数学
理系数学カテゴリの画像
共テ数学が取れない
こんにちは。共テ数学は問題構成が特徴的な問題が多いので、記述式の問題とは少し違った解き方をしないといけないと思います。 全統の数学で偏差値65が取れているということは基礎が概ね固まっていると思うので、共テ数学をスムーズに解くコツさえ習得できれば大丈夫だと思います。以下に共テ数学に臨む上で念頭に置いた方が良いと思った事項をまとめました。 ◎共テ数学は「数学」ではなく「情報処理」 まず、共テ数学は「情報処理」を高速で繰り返すものだという認識をもっていただけると良いと思います。残念ながら、一つ一つの問題をじっくり吟味する時間はありません。解く時間が足りない、というのは、最初から一つ一つの問題に丁寧に向き合ってしまっているからではないかと推測しています。もしそうであれば、もう少しラフに問題に立ち向かっても良いかと思います。例えば、ある関数f(x)が最初に定義されていて、唐突に「f(2)を求めてください」と言われていたら「なぜx=2をここで代入するんだろう」と考えるのではなく、直ちに何も考えずにx=2を代入して計算してみてください。「なぜそのような操作が必要なのか」を考える前にとりあえず計算してみる、ということが非常に重要だと思います。一つの問題に対して様々な解法が存在することは多々あり、共テ数学はマーク式なのでその解き方が限定されてしまっています。自分の思いついた解きやすい方法とは違い、一見遠回りに見える方法で解くように指示されていることも少なくはないでしょう。そのような問題構成になっている以上、「解法を理解してから解き始める」というのはどうしても時間がかかってしまいます。とりあえず言われた通りに値を求めて手を動かしていくと、作問者が提示した解法の意味がだんだん理解できてくることが増え、スムーズに問題を解いていくことができると思います。 ◎必要な情報を素早く見つける 上述したように、共テ数学の問題では「なぜ今これを求めなければならないのか」と思うような問題があります。突然何の脈絡もなく値を求めさせるような問題がポンと出てきた時は特に、後の問題でその値を利用するものだと思って解き進めてみてください。直後の問題だったり、次の小問だったりと、多少の差はありますが、その答えを利用する問題が後ろにきっと出てくるはずです。問題文に含まれている不可解な情報についても、「問題文中に意味のない情報は含まれていない」と思って、ただその時はあまり深く考えずに、頭の片隅にそれを入れておくことが重要だと思います。解き進めていくうちに詰まってしまった時は、そのことを思い出して前に戻り、それらがうまく利用できないかを考えてみると打開できることがあると思います。 ◎誘導がなくなったら「前の小問の解法・求めた値を利用」すべし 大問の中で(1)、(2)、(3)とあった場合、(3)に誘導がほとんどついていないことが多いと思います。そういう時は、やはり前の小問に戻って解法を確認し、同じ要領で答えを導き出す、という方法が一番早いことが多いです。また、場合の数・確率の問題などでは、解法だけでなく求めた値も利用すると計算が楽になることもあります。例えば過去に見たことのある問題では、はじめ二種類のカードを無作為に引いて並べ、その並び方を調べる、という小問からスタートし、その後カードを三種類に増やし、引く枚数を4枚、5枚と増やしていくものがありました。そのような問題では、カードが1枚ずつ増えるときは「n枚がn+1枚になったんだから、n枚について考えた前問の答えを使えば追加した1枚についてだけ考えれば良い」という発想で楽に解くことができるようになります。ただし、前問の答えを利用する場合、計算ミスによる雪崩にはくれぐれも気をつけていただきたいと思います。 ◎まとめ もう一度上述した内容をまとめると、 ・とりあえず言われた通りに計算してみる ・不可解な情報、「なぜここでこの値を求めるのか」に要注意 ・誘導が消えたら前問の解法をチェック、必要ならば前問で求めた値を利用 の三つを念頭に置きながら解くことが重要だと思います。繰り返しますが、共テ数学は「情報処理」です。記述式の問題とは種類が違う、ということを踏まえ、問題に取り組んでみてはいかがでしょうか。少しでも参考になれば幸いです。
東京大学工学部 アトラス
20
10
文系数学
文系数学カテゴリの画像
順列、確率問題の記述
1対1対応を解いていると言うことなので、おそらく基本的な問題はこなしてきたという前提でお話します。この場合、自分が今までに演習するにあたって行っていたノートの書き方と言うものがおそらくあると思います。なので、無理に1対1対応の解説の書き方に合わせる必要は無いと思います。 回答を作成していく時に、図を描くのは視覚的な情報で今何を自分が行っているのかをはっきりさせやすくするためです。 ですので、答案を作成していて自分が今何をしているのか明確に分かっているのであれば特に描く必要は無いと思います。 これが、図形やグラフとなってくるともちろんそうはいきませんが。 また、今回は数学がある程度出来るという前提のもと話しましたが、もし数学が苦手であって今からの網羅性の高い参考書(青チャートや基礎問題精巧)を行う場合は、答案の書き方から何まで全て真似をすれば良いと思います。
北海道大学法学部 ゆーじ
0
1
文系数学
文系数学カテゴリの画像