UniLink WebToAppバナー画像

数学記述について

クリップ(2) コメント(1)
3/7 0:15
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

ネギ

高1 愛知県 金沢大学人間社会学域(55)志望

新高一の者ですが数学の勉強で普段から記述で解答を つくるべきなのか教えてほしいです。 目指しいる大学は国公立大学です。(文系)

回答

回答者のプロフィール画像

ヤサイクション

大阪大学外国語学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
まずは問題が解けるようになることが第1なので なぜこの公式が使えるのか、ということなどの解法を理解することを極めていけばいいと思います。 ○○を求めたい。だから△△の公式を使う。ということがわかっていれば、受験の際にはその考えを順序だてて記述して問題を解いていくだけなのでわかりやすいかなと思います。 まとめると、記述の練習は高3からでも全然大丈夫です。(問題が解けることが最優先だから) ちゃんと解法を理解しながらたくさん演習を重ねていけば数学は伸びます! 大学受験を高一から考えることが出来ている時点で尊敬します!頑張ってください!
回答者のプロフィール画像

ヤサイクション

大阪大学外国語学部

3
ファン
3.3
平均クリップ
4.4
平均評価

プロフィール

変な生き方してます(?)

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

ネギ
4/15 19:46
ありがとうございました

よく一緒に読まれている人気の回答

理系になりたい
初めまして。rockyyyと申します。 数学の勉強法についてお答えします。 結論から言うと、数学は問題の解法を自分の中で完璧に理解して落とし込むという勉強法が良いのではないのかと思います。 それでは、数学は暗記科目なのか?と思われるかもしれません。しかし僕は、以前別の受験生さんにもお答えしましたが、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そしてそのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学を解くときは、その問題に対してただ決められた解法を思い出して書き出すという訳ではありません。数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今まだ高1であられるので、今からしっかり勉強していれば、必ず大丈夫です。物理化学などの勉強法についても僕は他にも投稿させてもらっているので、よければ参考にしてください!受験応援しています!
大阪大学工学部 rockyyy
3
2
理系数学
理系数学カテゴリの画像
二次試験 記述問題
私が当時、数学の記述問題を解くときに意識していたポイントを、いくつかまとめてみたいと思います。 これは、当時の数学担当の先生に教えてもらったものなので、是非参考にしてください。 ・問題文を整理する。 まずは、いきなり解き始めるのでは無く、与えられた条件と問われている答えを、整理することから始めます。 焦って解いてしまうと、いつの間にか問題と全く関係の無いものを求めていたり、見切り発車でスタートしてしまうと、初めから解き直さないといけないことになったりするので、しっかりと予想してから解くようにします。 また、問題文で与えられた条件は、解く最中に全部を使うことがほとんどなので、条件の下に線を引いておいたりすると、見返すときも楽になります。 条件を一本線、答えを二本線など、問題文自体に線を引くと見やすいかもしれません。 ・答えを書く時には、式だけではなく日本語もしっかり書く。 記述問題では、答えのマルバツだけでなく、部分点を貰えることがあります。これは、式ではなく日本語の部分で貰えることが多いので、省略せずにしっかりと書きましょう。 例えば、三角比の問題に対して余弦定理を使おうと思った時に、いきなり余弦定理の公式を書くのではなく、「△ABCに対して余弦定理を使うと、」という風に書くといいでしょう。 また、方程式の問題等で最大値や最小値を求める問題などは、範囲があればしっかりと、「-3<x<5 の範囲であれば、」のように定義域をしっかり書くことが大事です。 これは、問題集や模試の模範解答などにも、解答例として書いてあると思うので、それを参考にしながら書くといいと思います。 ・図やグラフは絶対に書く。 問題が図やグラフに関係のある問題では、必ずと言っていいほど図やグラフを書いてください。これは、自分が解く時でも、自分の中で整理するためにも使えますし、先程も挙げた部分点という観点でもものすごく重要になります。 図形や関数の問題だけでなく、確率や数列・ベクトルでも、書けるものはどんどん書いていきましょう。 ・前の問題の答えも使ってみよう。 大問の中で、(1)~(4)まである問題をよく見ると思います。(4)の問題を解くときにどうやって解こうかなと考えてしまうことがあれば、ぜひ(1)や(2)の問題を見直してみてください。この答えを使って解くようになっていたり、これがヒントとして使える問題がほとんどになってます。 センター数学でも前の問題の答えを使って解く問題がよくあると思いますが、記述問題でも同じです。前の問題はどんどん使っていきましょう。 ・計算は丁寧に、見直しはしっかりする。 記述問題で重要なのは、計算量だと思います。大問一つ一つに、たくさんの文字と式を書かないといけません。解くときは焦らず丁寧にすることで計算ミスをなくしましょう。最初の方でミスをしてしまうと、すごくもったいないです。 また、計算ミスは誰にでもあることなので、しっかり答えを出した後にも見直しをしましょう。時間が余れば検算をするのもいいと思います。 たくさん書いてしまいましたが、一つずつしていくと、記述問題も点数を取れるようになると思います。 是非参考になればと思います。頑張ってください!
大阪大学基礎工学部 tomato-juice
21
1
文系数学
文系数学カテゴリの画像
数学の勉強法
東京大学に所属している者です。 数学力を身につける上で最も重要になってくるのが、「模範的な思考のインプットとアウトプット」です。これだけでは分かりにくいと思うので、「問題を解いた後にするべきこと」と、「何故それをやった方が良いのか」というのを以下で述べていきますので、是非参考にしてみてください。 まず、【どうしてその解答・解法になるのか】を一文・一式ごとに意識しながら解いた問題の丸つけや復習をしましょう。これは数学に限らず他の科目でもするべきではありますが、特に数学の場合は、「どうして模範解答は最初にこの方針を立てることができたのか」「どうして模範解答はここでこの式変形をしているのか」「どうして模範解答はここでこの定理を使おうとしたのか」など、言い始めればキリがないです。このような普通であれば見逃したり流したりしてしまうような細かいことにまで意識を向けることで、「解答へのアプローチの模範的な思考」をインプットすることができます。 次に、【丸つけや復習をした問題を翌日に何も見ずに解く】というステップに移ります。こうすることで、前日にインプットした「解答へのアプローチの模範的な思考」をアウトプットする練習ができます。必ず昨日考えていたことが自然にドンドン思い出されるので、復習がただの流れ作業にはならず、効率的な数学の勉強になるはずです。 少しでも参考になれば幸いです。
東京大学文科三類 Mx
32
6
文系数学
文系数学カテゴリの画像
大阪大学経済学部数学
はじめまして! 同じく数学を国立の二次試験で使いましたのでお答えします! まず、考え込まずに書いてみる、ということを意識して解いていました。 一見、どうやって解いたらいいのか分からないような問題が出たときに、とりあえず問題文から分かることを書き出してみる、このアプローチが大切です。 その上で、書き出したものを組み合わせて、他に分かることはないか探ってみたり、最終的に答えを出したいところから逆算してみる。(答えにたどり着くためには、その前にここを出して、そのためにはここを解く必要があるな🤔) できることから、基本的なところから崩していくことで、解法につながるものが見えてくると思いますよ! 頑張ってくださいね☺️
東北大学教育学部 まー
0
0
文系数学
文系数学カテゴリの画像
数学基礎
文系ですが、数3は一通り勉強していたのでお答えします。 数3に限らず、受験数学全般において基礎が完成するとはとは「チャートレベルの問題が」「見た瞬間に解法が分かり」「どういう理由でその解法になるのかが理解できている」ことだと私は考えています。 いわゆる入試レベルの数学の問題で必要なスキルは、「自分の頭で解法を考える」ことですが、これを実現するには基礎レベルの解法を組み合わせ、また自分で基礎レベルの解法を発展させる必要があります。そのためには瞬時に解法を思い出し、発展させるためにその解法の原理を理解している必要があります。 気をつけなければいけないのは、解法を丸暗記にしないことです。先程述べた通り、解法を発展させるには原理そのものを理解していないと不可能だからです。全ての模範解答に「どうしてそうなるのか」という疑問を持ちましょう。その疑問が解消されなければあなたはその解法の原理を理解していないのです。じっくり考え、それでも分からなければ先生に質問しましょう。 まずはチャートのどのページを開かれてもスラスラと解答できることを目標としましょう。まだまだ時間はありますから焦らず確実に勉強していくことをお勧めします。 長文駄文失礼しました。これからのご健闘をお祈りすると同時に、いつかあなたと京大でお会いできることを楽しみにしています‼︎
京都大学経済学部 Ikahige
19
2
理系数学
理系数学カテゴリの画像
数学の勉強法
①頭で考え、回答を導き出す ②採点者にわかるように説明する の2つが合わさって初めて受験数学が解けたことになります。 今からでもいいので書いて解いてください。 他人に読める程度なら字も汚くていいので。 これは本当に先生のおっしゃる通りだと思います。 本番の試験では 時間配分や解答用紙など、頭で解く時と勝手が違うことが多いです。 ノートを普段は使い、 気が向いた時には罫線のない白紙のコピー用紙に解くなど、本番を見据えた勉強をすることをお勧めします。 やってみると②が1番難しいことに気づくと思います。 これはどの科目においても言える事ですが、 ②を重視してください。 貴方のゴールは 数学の問題を解決する事ではなく、 志望校(採点者)に合格をいただく事なのですから。 応援しています!
慶應義塾大学法学部 G
3
0
理系数学
理系数学カテゴリの画像
高一でやるべき事
それに加えて、理科の公式を覚えたり内容を理解することもしておくといいと思います! 理系志望ということで、二次では理科を使うようになると思います。受験間際になって全範囲を復習するのは大変なので、今のうちに、少しずつでも基礎から固めていくといいと思います。 数学は、問題の解法を覚えることを中心にするのではなく、あくまでも基礎の徹底・解法の理解・日本語の書き方を中心にやっていくのがいいと思います。 解説に載っている文の中で、なぜここでこの式が出てくるのか、この文章はなぜ書かれているのかを理解するのと、こういう解き方もあるんだ、こうすると楽に解けるんだということを気付くことが大事だと思います。 あくまでも、丸暗記ではなく、理解しながら覚えるということを意識してやるといいと思います。 あとは、単語や文法は、覚えるだけでなく、ちゃんと問題を解けるのかも、ちょっとずつでいいので確認してみましょう。覚えるだけで解くときに使えなかったら意味が無いので、確認することも大事です。 また、国語の読解問題、英語の長文読解も、問題に慣れることで解けるようになります。定期的に解いていきましょう。 高校1年生から根を詰めて勉強する必要は無いと思います。あくまでも、日々の勉強を大切にしつつも、ある程度の休憩を取ったり、規則正しい生活を送ってください! 是非参考になればと思います。頑張ってください!
大阪大学基礎工学部 tomato-juice
7
0
時間の使い方
時間の使い方カテゴリの画像
数学の勉強の仕方 高校数学が苦手
⑴ 数学を学ぶことの目的は何か  およそ勉強をするにあたって、今自らが学びつつある学問が目的としているものが一体何であるのかを明確にすることは、いかなる内容の学習の際にも必要となる基本中の基本事項です。というのも、それがわからなければ、教えられることや教科書に書いてあることを暗記するよりほかに学習のしようがなく、結局いつまでたってもその学問について理解できる段階には至らないのは当然だからです(この勉強における目的意識の重要性については、末弘厳太郎先生の著書を読んだときに大いに感銘をうけた部分であり、私の勉強観の根幹を成しています)。  ことに高校数学に至っては、その目的は「数学的に思考する力の涵養」であると言えましょう。微分や積分、指数対数、三角関数など、日常生活でこれらの知識が生きることはまず少ないでしょうし、ともすると、それらをはじめ数学的な知識の習得が目的としてあるとは考えにくい。にもかかわらず、数学において数学的な知識を習得させられるという実態を考慮すると、数学的な知識を習得することは目的ではなく手段であり、真なる目的は、与えられた問題をそれを使っていかに解決していくかという段階にあり、すなわち、数学的に物事を考えて問題の解決に取り組むその能力を養うことにあると考えられます。模試などの記述問題でも、解答部分よりもそれを導き出すまでの過程を重視して採点されることと思いますが、それもこのことを証左しているのではないでしょうか。  では、数学的に物事を考えるとはどういうことをいうのかと問えば、(私は専門家ではないので適切な答えであるかどうかは定かではありませんが)それは恐らく、その場に適切な規則、原理(いわゆる定理や公式)をうまく活用して問題の解決を図ることだ、と考えられるでしょう。この点で数学は、事実を基にその場その場に適当な法理を見出し、それを使って問題の解決を図る法律学と似通っている部分があると思います。ただ、両者を決定的に異なるものたらしめる点は何かというと、裁判官による法理の解釈によって結論に一定の幅が出る法律学に対し、数学の規則は常に客観的に不変であるということ。これが、かえって数学における問題解決を簡単にする場合があるということです。 ⑵高校数学の学習態度  脱線が過ぎました。このように考えてみると、公式や定理を理解し、頭に入れることは単なる手段であり、実際にこれを活用できなければ意味がないということがわかるはずです。したがって、数学学習で最初に努めるべきは、公式・定理の理解です。数学Ⅱ、数学A、数学Bをこれから先取りで学習しようと考えていらっしゃるようですが、これらに限らず、現在学んでいる数学Ⅰについても基本は一緒です。まずは教科書に出てくる公式や定理を理解することを心がけるとよいと思います。教科書にはそれらの証明、すなわちなぜその定理・公式が成り立つのかについても書かれていると思いますので、自分で証明でき、また人にそれを説明できるほどになれば立派なものです。  単純に暗記するだけでは危険です。受験勉強ではとかく効率が求められがちですが、そうやって小さな部分を見落としても、本番でそれが問われて見事に足をすくわれるなんてことはざらにあります。いつしかの東大ではsinθとcosθの定義と加法定理の証明が、いつしかの阪大では点と直線の距離を求める公式の証明が出題されています。定理や公式を真に理解していれば、いずれも貴重な得点源となってライバルたちを出し抜くことも成し遂げえただろう問題です。こういった問題は、いつどこで出題されるか分かりません。 ⑶問題演習の取り組み方  さて、公式・定理を頭に入れるためには、同時にそれを正しく使える力も養う必要があります。上述したように、高校数学の目的は「数学的な思考能力の涵養」であり、いくら公式や定理を頭に入れてもそれを正しく使えなければ問題解決は難しくなります。なので、同時に問題演習にも取り組みましょう。最初は教科書に載っている基本例題から、だんだんと練習問題、章末問題、そして問題集の応用問題へと段階を踏んでいきます。問題演習を通じて、どういったところでどんな規則がどのように使えるのか、またなぜそのように使えるのかということを自分自身で見極めることを心がければ、複雑な問題にも対応できるだけの発展的な思考はおのずと身についていきます。 ⑷問題集  チャートについては、使ったことがないので色と難易度の関係などよくわかりませんが、高校1年生の初期から使うくらいですから、Focus GoldやNew Action(名前はうろ覚え)などと同じようなものだとしておきます。私の高校では、日々の課題は教科書や学校の問題集(4STEP)、長期休暇の課題として
北海道大学法学部 たけなわ
3
0
文系数学
文系数学カテゴリの画像
単なる問題演習でも記述?
はじめまして!ご質問にお答えさせていただきます、東京大学理科一類の者です! 京都大学医学部志望ということので数学は全問記述ですよね。志望校が記述式の問題の場合は一般的には記述になれるために普段から練習していくべきではあります。 ただ、毎回毎回記述していては時間がかかってしまい、色々な問題に触れていきたい今の時期では焦ってしまいますよね。 そこで私が行っていた記述対策の勉強法をご紹介しますね! まず第一に、余程直感的な解き方をしていない限りは記述を書くのには苦労しないはずです。苦労するとすれば、定理や独特の記述形式が定まっている場合です。例えば、「計算式は分かるのにこの定理の名前なんだっけ?」、「メネラウスだったか、チェバだったか?(現在の私です、情けない笑)」や独特の記述形式としては軌跡と領域の問題の最後の定型文(一方逆にこの領域内のすべての点はこれらの条件を満たす)等です。これらは覚えておくしかないので、そういうものは自分で洗い出して整理しておくと良いでしょう。 次になぜ記述形式に慣れておく必要があるのかといいますと、記述をすると圧倒的に時間が足りないためです。たいていの場合、大学入試の数学の問題は一題20分ですので、記述なしの計算用紙などでは最低15分以内に解き切れなければ間に合いません。なので私は普段問題を1題解く際は、ミニストップウォッチで15分設定して、それ以内に記述なしで解ききることを目標にしていました。 また、どの計算式や図、グラフを書くのかを常にイメージしながら普段から解くようにするとなおよいでしょう。参考書の解説などみる際は、どの計算式や図、グラフを書かれているのかを意識してみてみるといいと思います! そのほかには、文字の定義や条件を忘れずに記載するなどが注意事項としてあるかと思います。 以上のようにすれば記述対策としては問題ないかと思います! 志望校の問題を解く際は本番をイメージして、時間を計って記述式で解いてみて、時間が足りなかったのならその要因を自己分析するべきです。 私は志望校以外の問題でも2週間に一度の頻度で、適当に6題参考書から選び、東大の解答用紙を印刷して、厳しめに一題15分の90分を時間制限として記述式テストを行ったりしていました。 各大学の記述用の解答用紙はネットなどで調べるとでてきますので、モチベーションアップのためにも有効な手段だと思いますので是非! 最後に、記述式のいい点は部分点が狙えるところです。なので模試の解説などを見る際は、どういった部分が書けていれば部分点がもらえるのかを意識して見ることで、解ききることができなくても数点をもぎとることができるようになると思います! 受験本番では数点が命取りですので頑張りましょう。 応援していますね!何か他に質問があれば何なりとおっしゃってください!
東京大学理科一類 ryu031ki
3
2
理系数学
理系数学カテゴリの画像
数学の解法暗記
こんばんは。 高校の数学は、おっしゃる通り、中学までの数学と比べると、様々か角度からのアプローチができるようになります。ですが、(少し厳しいことを書くかもしれませんがお許し下さい)名古屋大学を受験するにあたって、解法を一つしかわかっていないようでは、合格への道はかなり遠いと思います。 といいますのも、名古屋大学の数学の入試は文系理系問わず、試験当日全員に、問題冊子、解答用紙に加えて、数学公式集が配布されます。(もちろん公式集には全ての公式が掲載されているわけではありませんが)数学の入試で、公式集が配布されるということは、つまり、「ただ単に、公式に代入して、答えが求められる」ことのできる人を大学が求めているわけではないでしょうし、そのような人が有利な採点はなされないという大学側からのメッセージではないかと思います。 このように考えますと、解法を何通り覚えたかではなく、なぜその公式・定理を使うのかということの方が大切だと思います。ただし、いきなりなぜその公式・定理を使うのかということを意識するとハードルが高すぎる可能性もありますので、まずは、複数解法のある問題に関しては、どの解法が最も計算が楽かや、どの解法が最もミスをしにくいかというような意識で、最終的には「解き方を暗記する」のではなく「なぜその公式・定理を使うのか」というような意識で数学を学習していくといいのではないかと思います。 まだ3年生の5月です。現段階で、駿台模試でC判定をお持ちであれば、このままの調子で勉強していけば、合格できると思いますよ。頑張ってください。
名古屋大学医学部 kai3140
5
1
文系数学
文系数学カテゴリの画像