UniLink WebToAppバナー画像

確率を解けるようになりたい

クリップ(12) コメント(2)
8/16 0:23
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

あたぼー

高卒 香川県 名古屋大学情報学部(61)志望

名古屋大学数学に頻出分野の「確率」を解けるようになりたいです。 微積や整数、ベクトルなど一手目が出やすい分野と比べて、定石というものを身につけてないとどうにもならないものかと思っているのですが、やっぱり経験値が物を言うのでしょうか? 加えて、確率特化の問題集(合格る確率、はっと目覚める確率…etc) もしくは、確率を極めるための問題集 何がおすすめでしょうか?

回答

回答者のプロフィール画像

もさこ

京都大学農学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは!確率は苦手な人が多い単元ですよね🥲 まず、定石は覚えるべきです。ただ、難しい確率の問題を解く時には、青チャート的な定石ではなく、その一個上のレベルでの定石を知っておく必要があります!確率が苦手な人はだいたいここで詰まっていることが多いイメージです⭐️ 加えて、当然経験値もかなり重要なファクターです。計算が重くなったり、場合分けが多くなったりしがちな範囲なので!最初に解き方の見通しが立たないと解きづらい問題も多いですし、「量をこなす」と「パターン化する」の両方を普段から意識する必要があります。 そこでおすすめなのが、YouTubeにあるMathematics Monster というチャンネルの動画です。僕はこれで確率の難しい定石を学びました!ネット上で問題の一覧もPDFで掲載されているので、印刷したりダウンロードしたりして取り組むことをお勧めします💪🏻 一見海外のチャンネルと思いがちですがちゃんと日本人で日本語なので安心してください! Mathematics Monster上に確率の問題は32題あり、その全てに解説動画があります。網羅性も非常に高く、解くためのポイントもしっかり喋ったりメモしてくれているので、量とパターン化の両方を同時にこなすことが可能です!
一方で注意点を挙げるとすると、問題の難易度はかなり高いです。青チャートなどを終えていないと、初見で解ける問題は少ないかもしれません。ただ、何度も解いたり解説を聞いたりすることで、確率は絶対得意になります!僕自身がそうだったのでこれは確信を持って言えます! あとは少し問題が古いです。(過去問演習と被りづらいともいえます) 次に確率だけを扱った参考書についてお答えします! あくまで個人の意見なので、気になるものは実際に書店で確かめてみてください⚠️⚠️ ①合格る確率 これはMathematics Monster と併用するのも有りです。確率は計算がしんどくなりがちな分野なので、合格る確率をこなしておくことで計算ミスを減らしたり、計算にかかる時間を短縮できるメリットがあります。 確率には問題を解くための定石だけでなく、ある程度は計算のパターンも存在します。それをこれで学ぶことができます💪🏻(ただ、計算はMathematics Monsterでも十分過ぎるほど学べます) ②ハッと目覚める確率 これも受験生時代にやっていたことがありますが、ネット上での評価は過大評価だと感じました。(⚠️あくまで個人の意見です) もちろん解けば力になりますが、Mathematics Monster で十分なように感じます。ただ、ハッと目覚める確率の方が易しい問題が多いのが特徴です! ③標準問題精巧 場合の数・確率 分野別で売っている水色のやつです。網羅性も高く難易度も幅広く、難しめの定石を学ぶのには良いと思います。ただ、問題数が多いので時間がかかることが難点です。 ④解法の探究・確率 大学への数学シリーズの参考書です。いわゆる大数の解き方やフォント(初めてだと少し戸惑うかもしれません)が使われています。それに抵抗がなければ非常に良い参考書です。 ただ、問題数がめちゃくちゃ多いので、覚悟を持って取り組んでください! 偉そうにレビューを色々と書かせていただきましたが、個人的には青チャートなどの網羅系→Mathematics Monster が時間的にも量的にも1番のおすすめです。 確率が得意になると数学への不安感がかなり解消されます! ぜひご参考になさってください⭐️応援しています📣
回答者のプロフィール画像

もさこ

京都大学農学部

7
ファン
3.3
平均クリップ
4.8
平均評価

プロフィール

こんにちは!もさこと言います🙇‍♂️ 京都大学の一回生です。 回答が良いと思っていただけたらクリップしたり、ファンになっていただけると励みになります💪🏻

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(2)

あたぼーのプロフィール画像
あたぼー
8/16 15:26
ご回答ありがとうございます!めっちゃ参考になりました! 教えていただいたMathematics Monster のチャンネル拝見してきました。 まだ1.2本しか動画見てませんが、なんか本当に僕が求めている「確率の何たるか」がとっても詰まっていました‼️ 確かに、問題のレベルは高いとは思いましたw 自信をつけられるように頑張ります!
もさこのプロフィール画像
もさこ
8/16 22:36
問題難しいですよね笑 何回も解き直してみてください!他の単元もおすすめですよ

よく一緒に読まれている人気の回答

数学のできる人
初見の問題が解けるようになる数学の勉強法について話しますね。 まず、初見の問題は大きく分けて2つあります。 ① 基本問題だが自分にとっては初見 ② 応用問題で多くの人にとって初見 まず、①について 基本問題の演習を繰り返し、基礎固めをしてください。 具体的な方法は下に書いておきますね。 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、『オススメ教材』ですが 全範囲を満遍なくカバーし、数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 なおかつ、問題を解くときの考え方まで紹介しているので、基礎固めはこの教材を何周もすれば十分です! 基礎がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! この演習用として ・1対1対応の数学 ・プラチカ ・やさしい理系数学 などがオススメです! 次に『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください!
慶應義塾大学理工学部 チェンパン
85
8
理系数学
理系数学カテゴリの画像
数学の問題集
数学が余り得意ではない人という前提で話します。 *数1a2b ・青チャート 例題だけでいいので解けるようにする。この時注意してほしいのは、よく「完璧にしてから…」というフレーズを見かけると思うのですが、余りこの言葉に踊らされないでください。完璧なんて時間がかかりすぎて現実的に厳しいです(数学がめちゃくちゃ得意とかならできるでしょうけど)。ですので、ある程度解けるなとおもったら1対1に移行しましょう。 ・1対1 とりあえず解いてみましょう。そしてある程度時間をかけても解けそうもなければ解答を見て熟読しましょう。そして頭の中で整理して、何も見ずに解答を書いてみましょう。それの繰り返しです。「この分野はあまり理解できてないな」と思えば青チャートに戻ってそこを復習しましょう。 ・ハイレベル精選問題集1a2b この問題集は難しいですが、余裕があれば自分がモノにできそうな問題だけでもやっておくとアドバンテージになるかもしれません。ちなみに私は数学は苦手でしたが、この問題集のおかげで本番の阪大の数学で助かった問題がありました。 *数3 青チャートの例題をやり込めば十分だと思います。特に微積の分野は基礎的な解法などをしっかりと覚えましょう。結局は本番でもそういう問題が解けるか解けないかで合格か否かが決まります。難しい問題を解ければその分アドバンテージになりますが、合格するにはみんなが取れる問題を落とさなければいいので基礎を大事にしましょう。 最後に言っておきたいのですが、上に挙げたような問題集を本番までにモノにできればいいのです。ですので、周りよりも自分は遅れてるだの、模試の結果が悪いだの気にしなくていいです。ですので本番までにモノにしてやるぞ!という気持ちで何度も何度も問題集を繰り返しましょう。あと先ほども言いましたがみんなが取れる問題を取れば合格点にたどり着けます。これだけは覚えておきましょう。
大阪大学基礎工学部 てっつん
34
1
理系数学
理系数学カテゴリの画像
苦手分野すすめるか、網羅系をやるか
初めまして!慶應大学経済学部A方式に合格したものです。(商学部も受かりました。) 僕は元々東京大学をめざしていたこともあり、数学は比較的得意だったので、アドバイスが出来たら嬉しいです。 慶應大学経済学部の場合、マーク部分(すなわち、第1段階選抜の点数に含まれる)に確率があります。僕自身、確率が非常に苦手で、これといった対策から逃げていましたが、共通テスト、慶應大学本番ではどちらも確率で満点をとることが出来ました。そこで僕が行っていたことについて書いていきたいと思います。(整数は後半で) まず、けんたろうさんが挙げてらっしゃる参考書をやったことがないので、二者択一は僕にはできません(申し訳ないです) しかし、慶應経済の場合確率はカラクリに気付けば一瞬で解けてしまうが、そのカラクリに気付くのが難しいという問題が多いです。そのため、まずは基礎を徹底することが近道だと思います。僕自身先に述べたように確率が非常に苦手応用問題の対策から逃げてしまって東大の本番の確率は解き切る事が出来ませんでした。しかし、基礎だけは見直しておいたおかげで、他の分野に通づるような発想力でカラクリを見抜き、慶應経済の確率は満点を取れたので、基礎固めを行ってください。確率は、自分が何が分からないのかが分からない分野の最たる例だと思っています。そのため、何が自分を出来なくさせているのかをしっかり分析しましょう。アバウトな解答になってしまい、申し訳ないですが、これが一番の近道だと思います。 そして次に整数についてです。受験数学の整数はかなりパターン化されています。つまり、定石をどれだけ知っているかが鍵になっていると思います。東大や一橋の整数は一筋縄には行かない問題が多いですが、それでも次の三つを使いこなせばできるものが多いです。 ①因数分解 ②余りに着目(modを使いこなす) ③範囲を絞る の3つです。 ①の因数分解は、例えばa^2-b^2が素数である、というものでしたら(a-b)(a+b)が素数になるのでa-bかa+bのどちらかが1になるとすぐに分かります。 ②の余りに着目は、例えばN^2であれば3で割ったらあまりは0か1にしかなりません。(試して見てください)これが案外使えます。こんな感じで余りに注目します。 ③の範囲を絞るは、問題の条件から文字式についてどこまでの数を取れるのか、逆にどこまでしかこの文字は動かないのかを精査することで解答を絞れます。 と言った感じで整数はパターンです。これを意識してみてください。 最後に、僕自身、けんたろうさんが言っていたような東大志望の者でした。そして、周りの結果を見てみると、一橋に受かった友達は全員慶應経済に補欠、または不合格でした。それくらい経済学部Aは難易度が高く、クラスの友達にも28人中5~6人ほど理系がいます。そのため、数学は相当力をつけておくべきです。参考書で言えば、文系数学の良問プラチカ位まで必要だと思います。(僕は東大において数学で圧倒するためにその上の上級問題精講まで手を出したました。)ただ、慶應経済の数学の特徴として時間が超絶足りない、終わるわけない、ことが挙げられるので、難易度と同じくらいに解くスピードを意識すると良いと思います。
慶應義塾大学経済学部 K.I
5
1
文系数学
文系数学カテゴリの画像
整数、確率が苦手すぎます
こんばんは!回答が遅くなってすみません! 確率と整数は自分自身得意としていたので、答えさせていただきます! まずいずれにも共通することですが、青チャートやFocus goldの例題レベルの問題は確実に網羅してください!この基礎が発展的な問題を解くのに必ず必要になります。ですので、まずこの部分が抜けていたら、確認しておくようにしてください! 確率についてです。確率はとにかく事象を文章から図などへと可視化してみましょう!どのような動きが起こっているのか、どのような特徴があるのか、それを分かりやすくするのです。この動作は慣れないといけないので、何問かやってみるといいです。とにかく文章を分かりやすくしてみることを意識してみてください。文章では見えなかった情報が浮かび上がってくるはずです。また、それでも厳しければ、青チャートなどの例題で似た問題がないか思い浮かべ、その解き方を真似してみてください! それを何問しても厳しければ、「合格る確率」という参考書を購入して、stage3のみやることをおすすめします。stage3のみといったのは、それが最も入試に頻出かつ全パターンを網羅しているいいレベルの問題だからです。そのパターンを全て覚えましょう! 次に、整数です。整数は確率より厄介な問題が多いですが、基本的にはあのユークリッドの互除法を用いた不定方程式の解法パターンを覚えておけば基本はOKです。そして整数問題が出てきた時は、このパターンの発展系ではないか確認してみましょう。 また、整数では、学校では言われないよく出るパターンがあるのです。例えば、平方数はmod3、4を使うと数を絞れる、などです。これは、YouTubeのPASSLABOというチャンネルで整数全パターン解説という動画で整数を全部網羅してみるので、よかったらやってみてください!(回し者ではないです笑) 確率と整数は個人的に数3よりも難しいなと思います。ですので、まとまった時間をとって集中的にやってみるといいです!応援しています!
九州大学経済学部 riku
16
4
理系数学
理系数学カテゴリの画像
センター数学1A大問選択 捨てる分野があっていいのか
こんにちは!東工大一年のたまちゃんです。 質問者様は数学はセンター試験でのみ使うということでしょうか? もしそうならば、あまりオススメはしませんが、捨てちゃうのもありだと思います。 私は図形問題は捨てていました。確率、整数で受けました。ただ、センター試験の確率は計算は少し面倒な事もありますが、基本的にはあまり難しくないと個人的には思います。また、チャートの問題の方が難しいため、チャートの問題が解けるなら、センター試験の確率は解けないとおかしいです。 答えを全く見ずに、解けるところまで行けば余裕で満点くると思います。 図形問題の怖いところは方針が少し思いつきにくいところだと思います。私は苦手でした。 ただ、2次試験で数学を使わないのであれば、捨てても良いかと思います。 2次試験で数学を使うなら、おそらく確率は必要であると思いますので、センタより上のレベルに持って行く必要がありますが… 確率は個人的に特殊な分野だと思っていて、数学が得意な人でも確率だけは苦手な人も割といます。なので、強制はいたしません。 整数と図形が得意なのであれば、そこを伸ばしていけば良いと思います。 長文失礼しました。
東京工業大学第三類 たまちゃん
5
1
文系数学
文系数学カテゴリの画像
どうすればいいのか分からない
まず、この時点でチャートの例題が解けるようになっているのは素晴らしいと思います👍 基礎力は着実についてきていると思うので全く悲観しなくて良いです。 どういう所で点を落としているのかわからないですが、どの分野も青チャートの例題はほぼ解ける状態だとすると、その先の訓練が少し足りていないのかなと思います。 具体的には「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけることです。 (ここでいう基礎知識というのは、青チャートの例題1つ1つが扱っているポイントのことです。) 入試問題は 🔆「青チャート例題レベルの基礎問題」 🔆「少しひねってあるが、青チャート例題レベルの基礎知識を組み合わせたり、発展させたりすれば解き切れる標準問題」 🔆「基礎知識だけでは解きにくく、最後に回すべき難問」 の3つに大別されます。 入試本番は全5問がどの種類なのかを見極め、解く順番を決めた上で、上記の基礎問題と標準問題を解けるところまで解き切る必要があります。 基礎問題はほとんどの受験者が解ききれ、標準問題はそれ以前の勉強によって差がつき、難問は極めて少数の人間しか試験時間内に解けないため、標準問題をどれだけ解けるかが勝負となります。 では先述の、「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけるには何をすれば良いのか? その答えが過去問演習になります。 普通の参考書ではダメなのかと思うかもしれませんが、一般的に難しいとされている参考書は、ここでいう標準問題だけを集めたものが多いです。 なので、こういった参考書だけでは実際に入試で出る基礎問題や難問の手触りが学べません。 また、過去問と同じ問題は出ないと思われるかもしませんが、ポイントとなる部分が同じ、つまり傾向に沿った「似た」問題はよく出るので、過去問演習はとても効果的な志望校対策といえます。 早めに過去問演習を始めた方が、より早く自分の弱点に気づくことになり、余裕を持って対策を立てられるので、今から取り組み出して良いかと思います。 具体的な進め方ですが、はじめのうちは、得意な分野からでも、近い年度からセットで解いていっても、好きなように進めればいいと思います。(直前期の演習用に、最近の2、3年度分は残しておくことをお勧めします。) 時間制限も秋ごろまではかけなくていいと思います。 とにかく、 🔆その問題がどの種類の問題なのかを考える (多くの過去問集には難易度指標がついているのでそれを参考にしてください。鉄緑のものが詳しくて良いと思います。) 🔆標準問題を通して基礎知識の応用方法を吸収していく (重要なポイントをまとめているのはとてもいいと思います!自分も大事だと思ったところをルーズリーフに書き溜めていき、試験前にはファイリングしたものに目を通していました。) 🔆基礎問題や標準問題が解けなかった場合、どうして解けなかったのかを考え、次に同じようなところで詰まらないようにするにはどうすればいいか考える 🔆基礎知識の抜けに気付いた場合は、適宜チャートを見返したりして復習する といったことを意識して進めてください。 注意点としては難問の復習に時間をかけすぎないことです。必要最低限の知識だけ吸収してとばしましょう。 色々と書きましたが、この辺りのことは「受験の叡智」という本に、より詳しく、説得力のある形で書かれているのでぜひ読んでみてください!
東京大学文科二類 にゃん
7
7
文系数学
文系数学カテゴリの画像
解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
64
6
文系数学
文系数学カテゴリの画像
初見の問題が解けない
初見の問題が解けるようになるための 数学の参考書と勉強法について紹介します! まず、初見の問題について これを2つに分類します。 ① 基本問題だが自分にとっては初見の問題 ② 応用問題で多くの人にとって初見の問題 まず、①について 基本問題の演習を繰り返し、 基礎固めをしてください。 具体的な方法は下に書いておきます! 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、①の基本問題に関する『オススメ教材』ですが 全範囲を満遍なくカバーし、 数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 問題を解くときの考え方まで紹介しているので、 基礎固めはこの教材を何周もすれば十分です! 基礎問題がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 加えて、青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! 次に②の応用問題を解く力を身につける 演習用のオススメ教材としては以下の教材がオススメです! ・1対1対応の数学 ・プラチカ ・やさしい理系数学 最後にに『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください! やり方を忘れた時に見返してくれたら幸いです。
慶應義塾大学理工学部 チェンパン
64
4
文系数学
文系数学カテゴリの画像
整数、確率の対策の時期は
【分野別対策に関して】 標準問題精講を完璧にして、別の参考書に行くというのは無理だと思います。 ひと通り終えているのなら、弱点補強を目的として別の問題集に取り組むのは全然ありです。 「基本を完璧にしてから応用」 という考え方はもっともらしいのですが、実際は応用に取り組みつつ何度も基本に戻って考えるというスタイルがいいでしょう。 別の問題集で間違えたところを標準問題精講と照らし合わせてやると良いです。 ------------ 【分野別対策の時期に関して】 分野別にはこの対策!というのは、個人的にはありませんでした。 センター試験に特化した対策を年明けからやっていた、くらいでしょうか。 それまでは、難度の高い問題集や模試の復習と、高校3年間で使ってきた青チャートと4STEPを行き来しながら、弱点補強と論理構築練習を繰り返しました。 ------------ 【その他思ったこと】 確率や整数が苦手な方は、ベン図をはじめとした集合の考え方がうまく使えない印象です。 図や表を用いて確率や整数の解法を友人に説明できるかどうかを試してみましょう。 模試の復習を通じてやると良いです。
京都大学工学部 クウルス
34
2
文系数学
文系数学カテゴリの画像
数学嫌いでも数学を安定させるには
数学の苦手克服について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、半分間違っている認識だと思います。 実は数学はある程度、暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、類題は解けないと思います。 なので、これらの基本問題はある意味では覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! これらの基本問題の考え方を初見の問題に応用する問題が真に考える問題、つまり応用問題です。 したがって、数学が苦手だと思う方はまずある程度基本問題を暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください!
慶應義塾大学理工学部 チェンパン
16
0
理系数学
理系数学カテゴリの画像