3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],""] 7:I[231,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],""] 8:I[212,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] f:I[490,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"GoogleAnalytics"] 4:["id","MlGMPoiUq9zaD7ia9w6i","d"] 0:["sMF7Qq1oKpjYXR2YeUmJs",[[["",{"children":["advice",{"children":[["id","MlGMPoiUq9zaD7ia9w6i","d"],{"children":["__PAGE__?{\"id\":\"MlGMPoiUq9zaD7ia9w6i\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["advice",{"children":[["id","MlGMPoiUq9zaD7ia9w6i","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","$L6",null,{"async":true,"src":"https://securepubads.g.doubleclick.net/tag/js/gpt.js","crossOrigin":"anonymous"}],["$","$L6",null,{"id":"google-ad-manager","children":"\n window.googletag = window.googletag || {cmd: []};\n googletag.cmd.push(function() {\n googletag.defineSlot('/102643165/pc-under_title', ['fluid'], 'div-gpt-ad-1749012831201-0').addService(googletag.pubads());\n googletag.defineSlot('/102643165/unilink_web_under_advice', ['fluid'], 'div-gpt-ad-1749138434339-0').addService(googletag.pubads());\n googletag.pubads().enableSingleRequest();\n googletag.pubads().collapseEmptyDivs();\n googletag.enableServices();\n });\n "}],["$","body",null,{"className":"__className_36bd41","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/85d7fb81f313170a.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"この問題教えてください! | UniLink"}],["$","meta","3",{"name":"description","content":"A 1=10、An+1=2An +2のn +2乗のとき両辺を2のn +2乗で割ってもできますか?解説には2のn +1乗で割ってと書いてありますがどうしても気になります教えてください尚aなどは分かりやすくするために大文字にしております"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3903,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"ClientInfo"] 14:I[2798,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdUnderConsultation"] 15:I[2582,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdviserInfo"] 16:I[9083,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdviserProfile"] 17:I[7060,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdUnderAdvice"] 18:I[3194,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"CommentPostButton"] 1a:I[3866,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-53a773e0095d4429.js"],"AdOnAdviceList1"] 19:Tc1f, こういった問題独自の定義は、だいたい文字を含んでいることが多いです。例えば、 ・「nを正の整数とし、3^nを10で割った余りをanとする。」(東京大2016文系) ・「正の整数nの各位の数の和をS(n)で表す。」(一橋大2018) ・「nを2以上の整数とする。金貨と銀貨を含むn枚の硬貨を同時に投げ、裏が出た金貨は取り去り、取り去った金貨と同じ枚数の銀貨を加えるという試行の繰り返しを考える。初めはn枚すべてが金貨であり、n枚すべてが銀貨になった後も試行を繰り返す。k回目の試行の直後に、n枚の硬貨の中に金貨がj枚だけ残る確率をPk(j)(0≦j≦n)で表す。」(東北大2019文系) のように。あなたが挙げて下さった例でもそうですね。  ご存知のように、数学で文字が使われるのはそこに入る値が不特定であるときなので、逆にいえば、自分で具体的な値を代入して実験してみれば良いわけです。k-連続和でいえば、m=1、k=2とすると、3=1+2という等式になり、3は2-連続和であることになります(相談文のk+1はおそらくkー1の間違いですね。でなければ、nはk+2個の連続する自然数の和になってしまうので)。ちゃんと、n(3)がk(2)個の連続する自然数(1→2)の和であるという定義に則ってますね。2019年文系の確率も、例えばk=1を代入してみると、P1(j)は「n枚の金貨を同時に投げ、そのうちj枚が表で他が裏になる確率」のことを言っているのだとわかります(ちなみにこれは小問⑴)。反復試行の確率を考えればすぐ解けますね。すると、次はk=2、その次はk=3、と実験数をどんどん増やしていけば、Pk(j)の内容もいずれわかるはずです。試行の手順上、残るj枚は必ず全ての試行において表でなければならず、他方それ以外の金貨はすべて、k回のうちのどこかで裏が出ればいい(全て表で残る場合の余事象)わけですから、「n枚の金貨のうち、k回の試行の直後に残るべきj枚はk回とも全て表が出て、それ以外のn−j枚はk回の試行で少なくとも一回裏が出る確率」とわかります。ここまで日本語として簡略化できれば、Pk(j)(特に、k≧2)の値もそこまで苦戦せずに出せそうですね(ちなみにこれは小問⑵)。  このように、なるべく簡単な値から代入して実験を繰り返すことで、独自の定義が何を言っているのかは帰納的に理解できることが多いです。文字が多かったり、分かりにくい表現だったりして、複雑で難しく感じる定義が出てきたら、まずは実験してみることを心がけると良いと思います。文系の問題ですが、もしまだ解いてない場合はネタバレになってしまい申し訳ございません。1b:Td83,はじめまして! 回答させていただきます。 質問を見てまず思ったのが、数学を暗記科目だと割り切っているからなのかもしれないです。恐らく、日頃問題を解いたら解答を見て解法を丸暗記しているのではないでしょうか?だから直近でやった問題はすぐ解けるけれど、見たことがないタイプの問題に出会った時に何をすればいいのかわからなくなるのだと思います(全然違ったらごめんなさい)。 もしそうであるならば試して欲しいことがあって、覚える内容を少し抽象化するということです。例え解いた問題を時間が経ってもすぐに思い出せる状態になったとしても、先のように見たことがないタイプの問題に出会ったら結局何をすればいいのか分からなくて手が動きません。なので、解いた問題の解法を丸暗記するのではなく、「なぜその解法になったか」を覚えるようにした方がいいです。 少し具体的に説明します。ゆうさんは二次関数で手こずっているとの事なので、二次関数について話します。恐らく問題を見た時に、軸で場合分けをすべきか切片を求めるか、はたまた頂点の座標を出すべきか分からなくて手が止まるかと思います。そこで、日頃から、「なぜこの問題は軸で場合分けしたのか」「どうしてこの問題はまず切片あるいは頂点を出したのか」を意識して解答を読むと、その時の思考回路が実際に問題に出会った時にも使えるようになります。 その解法を選択した理由が分かれば、自分が問題に出会った時に最適な解法を導き出せるというわけです。もちろん当てずっぽう解法を試してみてそれで解けることもありますが、試験本番でそんな博打したくないですよね。試験で常に結果を出せる人は博打には頼らないです。 「抽象化をする」ということには別のメリットもあります。 それは、暗記量が減るということです。確かに二次関数はアプローチ方法が何個もあります。ですが、この「アプローチ」を一通り頭に入れてしまえば、解けない問題は無いと思います(私自身がそうでした)。もちろんその「アプローチ」というのは問題毎に解法を丸暗記することではなく、「なぜその解法を選んだか」を理解することから得られる思考回路のことです。ゆうさんがどのような教科書を使っているのか分かりませんが、大抵の参考書は二次関数はアプローチ事にまとめられています。比較的勉強しやすいかと思います。 色々書きましたが、少しはお役に立ちましたでしょうか? もしかしたら的外れな回答をしているかも知れません。その時はごめんなさい。 ただ、まだ高1なのにそこまで高い意識で勉強できているのは素晴らしいと思います。適度に息抜きをしながら頑張っていってほしいです。 もし分からないことやもっと聞きたいことがあれば、気軽にコメントやメッセージをしていただければと思います。 頑張ってください!1c:Tf72,数学の応用問題を解くには二種類の力が必要です。 ㊀定石 公式等の理解 ㊁定石 公式等を使ってどう問題を解くか考える力 もし㊀ができていないと感じているならば チャートやその他の問題集を使って 分野別に勉強しましょう。 ㊀はできているならば 融合問題を解くことで 考える力を養いましょう。 もし融合問題が見つからないというならば Googleで 電数と調べてみてください。 各大学の過去問などが載っている 数学のサイトがあります。活用してみてください。 しかし”考える力”とはなんなのか 次の問題を解く際の僕の思考回路をお伝えしながら解いていこうと思います。 問題 Tan1°は有理数かどうか(2006年 京大) 僕の頭の中 ㊀「三角関数かー 確信はないけどおそらく無理数やろうなあ、、 背理法かなんかで証明すればええんかな、、?」 ここまでは誰でも閃きそうですね。 ㊁「有理数と無理数の話やから 分数うまく使って背理法やろうなぁ」 この発想は rute2の無理数証明での定石から思いつきます。 ㊂「tan=a/bでおいてもどうしようもないなあ。 cos=b/rute a2 b2になるだけやしなあ。」 この発想から逃れるのは少し難しいかもしれませんが、何度か試すと これじゃダメだと気づくはずです。 ㊃「ならどうやって分数の話に持ち込もうかな、、 あっ! tanの加法定理って分数じゃなかったっけ!」 これは日常的にしっかりとtanの加法定理を意識できているかどうかですね。 ㊄「じゃあどーせ背理法やし tan1°を有理数として 加法定理使ってみよかな。 tan(1-0)=tan1-tan0/1-tan1tan0=tan1 あれ 元に戻ってもた。」 ここでのポイントはtan1を有理数として背理法を使うことですが、これは㊁から明らかですよね。rute2=a/bっておいて背理法するでしょ? ㊅「次tan2はどうやろか tan2=tan(1 1)=tan1 tan1/1-tan1tan1 あれっ? tan1が有理数なら tan2も有理数になってもたぞ!?」 ここが最大のポイント! 整数の問題全般に言えることですが、方針がたちづらい時は 数を増やしたりして実験しましょう。 ∴例えば nが関わる問題なら n=1やn=2を代入してみるのです。 ㊆「tan3=tan(1 2)=... tan6=tan(3 3) これ続けてったらtan@全部有理数になんね? ってことはtan60も有理数なってまうやん!」 決定的な一打です。 ㊇「ならtan1が有理数ならtan60も有理数なるってこと示して終了やな!」 僕の思考回路を砕いて説明しました。 この問題は入試において有名な難問ですが、 所詮はこの程度です。 思考回路に特別なセンスが感じられるところありましたか? ないでしょう? 多くの定石を身につけていれば必然的にこのように解くことができるはずです。 自習で融合問題を解く際、わかってもわからなくても 自分で思考のフローチャートを書きながら解いてみてください。 もし問題が解けたなら 解答をみて 自分のフローチャートと見比べてみましょう。 問題が解けていないならば どこの発想が足りなかったのかしっかり分析しましょう。 長くなりましたが最後にまとめるならば 「この問題解けない! 解答みよ! 」だけはやめましょう。 「この問題 ここまではフローチャートかけたけど どうしてもここから進まない、、 解答みて どの思考が足りなかったか確認しよう、」 こうしましょう。 まだまだ時間はあるので 頑張ってください!1d:Tb60,一言でいえば「経験」です。 必要条件の利用は青チャートなどのいわゆる網羅系参考書などでは得られない少し発展的な技術ですが、数学がある程度得意な人は過去にやったことがあったり、習ったことがあったりとそれを利用した経験があるのです。 なので質問者さんももう少し経験を積めば普通に利用できるようになると思います。 ここで必要条件の利用に至るまでの思考回路の簡単な例を紹介しておきます。 問題 「k を正の整数とする. 5n^2 − 2kn + 1 < 0 ー①を満たす整数 n が,ちょうど 1 個であるような k をすべて求めよ.」 これは2008年の一橋の問題です。下にプロセスを書いてますが良問であり考えがいがあるので一回自力で考えてみてください。 まず大前提として数学における問題と解は全て必要十分性を保っている必要があります、従ってこの問題を解く際必要十分を保ちながら解く(同値変形)のと必要、十分を分けて解く2通りに分かれます。この問題では実数でなく整数の2次方程式であり同値変形で解くのはややこしい(できることはできます)と判断しまず必要条件から絞ろうと考えます。 この問題を考える際式①が成り立つとき5x^2-2kx+1=0(xは実数)が二つの異なる実数解を持つー②「必要」がある(つまり②は①の必要条件である)ことを利用します、そうすることによってkの条件が分かります。そのもとで①を満たす整数nがちょうど1個である条件は5x^2-2kx+1=0の二つの解(α、βとおく)の差が2未満ー③であればいいということがわかります。②と③から得られるkの範囲が5=