UniLink WebToAppバナー画像

三角比はある程度理解してとばしたほうがいいのか?

クリップ(0) コメント(1)
5/16 11:22
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

ズンクス

高1 北海道 京都大学工学部(65)志望

今私は順列組み合わせをしている高1です。 私は三角比をある程度理解(公式みたいなやつの証明)して飛ばしました。正弦余弦はやってないです。 飛ばした理由は数IIで三角関数で同じようなことをするからだとYouTubeで見たからです。 ここで質問です。 三角比は飛ばしてどんどん先取りをしたほうがいいのか、それともちゃんとやったほうがいいのか。 私は、余弦定理や正弦定理などはやったほうがいいのかなーと思っています。

回答

回答者のプロフィール画像

sei108

九州大学医学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは!受験勉強お疲れ様です! まず数Ⅱで習う三角関数ですが、これは数Ⅰで習う三角比を関数として拡張したものになります。そのため、三角比との用途はある程度異なるものになります。三角関数は関数としての側面が重視されますが、三角比は図形問題に置ける使用がほとんどです。 計算問題としての三角比の応用問題であれば、三角関数を理解することで十分対応が可能であると考えられますが、三角比を用いた図形問題になれることも大切でしょう。そしてこれら、三角比を用いた図形問題は、共通テストでも必ず出題されます。そのため、三角比の問題をしっかりこなすことは必ず意味がある行為です。 三角比を用いた図形問題に早いうちから触れておくことは重要ですし、三角比をきちんと理解することで三角関数の正確な理解にも繋がります。 そして、一般に受験生としては先取りを早く進めることも重要ですが、その都度分野を深く理解することが大切です。 私自身、先取りを高一で数Ⅲまで行っていましたが、経験上、その都度先取りした分野はある程度完璧にしておかないと、先取りの意味があまり無くなってしまいます。先取りが終わった後あまり完成度が高くなければ、本末転倒です。 とはいえ、分野を周回しているうちに、習熟度も上がっていくのも事実です。そのため、図形的な応用はもちろん、三角比についてきちんと理解しながら、先取りを進めていくことがベストでしょう。 私のおすすめの勉強法は先取りをしつつ、勉強した分野を定期的に復習するという勉強法です。学校の定期テストや模試などをペースメーカーにして復習するのも良いでしょう。そうすることで先取りかつ取りこぼしなく勉強できます。 長くなりましたが、まとめると 1.三角比には図形問題という側面が大きく三角関数が完全に互換性のあるものではないということ 2.先取りは分野ごとにある程度仕上げる必要があり、復習とのバランスが大切だということ 3.復習のペースメーカーには定期テストや模試を有効活用できるということ 以上3点です。 受験勉強頑張ってくださいね!志望校合格をお祈りしています✨
UniLink パンフレットバナー画像

コメント(1)

ズンクス
5/16 12:23
ありがとうごさいます!誰にも相談できなかったので助かりました。 勉強方法も教えてくれてありがとうございました。 先取りしつつ、復習に重点を置きます。 ありがとうございました。

よく一緒に読まれている人気の回答

三角比はある程度理解してとばしたほうがいいのか?
こんにちは!受験勉強お疲れ様です! まず数Ⅱで習う三角関数ですが、これは数Ⅰで習う三角比を関数として拡張したものになります。そのため、三角比との用途はある程度異なるものになります。三角関数は関数としての側面が重視されますが、三角比は図形問題に置ける使用がほとんどです。 計算問題としての三角比の応用問題であれば、三角関数を理解することで十分対応が可能であると考えられますが、三角比を用いた図形問題になれることも大切でしょう。そしてこれら、三角比を用いた図形問題は、共通テストでも必ず出題されます。そのため、三角比の問題をしっかりこなすことは必ず意味がある行為です。 三角比を用いた図形問題に早いうちから触れておくことは重要ですし、三角比をきちんと理解することで三角関数の正確な理解にも繋がります。 そして、一般に受験生としては先取りを早く進めることも重要ですが、その都度分野を深く理解することが大切です。 私自身、先取りを高一で数Ⅲまで行っていましたが、経験上、その都度先取りした分野はある程度完璧にしておかないと、先取りの意味があまり無くなってしまいます。先取りが終わった後あまり完成度が高くなければ、本末転倒です。 とはいえ、分野を周回しているうちに、習熟度も上がっていくのも事実です。そのため、図形的な応用はもちろん、三角比についてきちんと理解しながら、先取りを進めていくことがベストでしょう。 私のおすすめの勉強法は先取りをしつつ、勉強した分野を定期的に復習するという勉強法です。学校の定期テストや模試などをペースメーカーにして復習するのも良いでしょう。そうすることで先取りかつ取りこぼしなく勉強できます。 長くなりましたが、まとめると 1.三角比には図形問題という側面が大きく三角関数が完全に互換性のあるものではないということ 2.先取りは分野ごとにある程度仕上げる必要があり、復習とのバランスが大切だということ 3.復習のペースメーカーには定期テストや模試を有効活用できるということ 以上3点です。 受験勉強頑張ってくださいね!志望校合格をお祈りしています✨
九州大学医学部 sei108
0
1
理系数学
理系数学カテゴリの画像
助けてくださいby三角比でつまづいた高1文一志望
 何がわかんないのかわかんないんでなんとも言えないんですが、正直難しい単元ではないので集中的に3.4日程度時間取ればほぼ仕上げることはできると思いますよ。高一なら苦手単元に時間を割いてもあまり痛くないですし、むしろ極端な苦手は気合入れて一気に直しちゃった方がいいですから、4日くらい三角比(関数?)漬けになってみてください。きっとできるようになります。  ちなみにそれでも完璧にならない!って場合でも、基礎さえできてれば正直三角比(関数)はほっといても良いです。後々数学に接してると死ぬほど出てくるんで勝手にできるようになります。ただし基礎さえできてれば、ですよ! 僕も昔は苦手でした。  一つ大事なのは、焦らずに落ち着いて勉強することです。わかんない!やばい!って思いながら勉強してると、不思議なことにどんだけやってもわかんないので、落ち着いて、噛み締めるように勉強していってください。まだ高一ですから焦らずに。
東京大学理科一類 Atom
0
2
文系数学
文系数学カテゴリの画像
数学の図形の参考書を別にやるべきか
着眼的にはかなりいいと思います。自分の苦手な分野をそれについて徹底的に練習し、解説してある参考書で苦手を補うということは大切です。 もし、図形に特化した問題集があるのならやってみたらいいと思います。 が、僕の知ってる限りではあまり図形に特化したものというのはないんですよね。 整数、場合の数・確率、微積・三角関数、等のものは結構専用の参考書あるんですが、図形については、見たことはありません。 もしなかった場合、自分なりに図形に関してまとめるというのがいいと思います。 例えば、直角って聞いたら、 直角二等辺三角形、30・60・90度の三角形、正方形・長方形、傾き-1、内積0などが思いつくとおもいます。この辺を自分なりにまとめておくと、かなり頭の中が整理されてくると思います。 基本的に高3までの数学は、単元ごとに学んでそれを潰していたと思うんですが、これからは別のまとめ方をして、1つの問題に対して色んな考え方をしていきましょう。そうすると数学力ぐんと伸びます。 また、この色んな方向からまとめてみるというのは、ほかの科目でも使えます。イメージとしては、暗記したものを、あらゆる方向から縛ってがんじがらめにする感じです。そうすると定着率があがるだけでなく、色んな場面でのアウトプットがしやすくなりますよ。
慶應義塾大学商学部 タイ
7
2
文系数学
文系数学カテゴリの画像
共通テスト数学 点数取れない
こんにちは! 数学では、問題文に出ている数や文字からある程度方針が立てられるような問題が多いです。 簡単な例ですが、例えば三角関数では、問題文に外接円が出てきたら正弦定理を使うのだろう、問題文に3つの辺が(もしくは2辺と角の大きさが)でてきているなら余弦定理を使うのだろう、と言ったものです。 問題集に関わらず、解いているときや解説を見るときにこの見方ができるようになるかならないかで大きく成長度合いは変わっていきます。ここが大事なポイントです! これができるようになると、〇について求めたいから、先に☆について求めればいいのか!という考え方ができるようになっていきます。 勉強法は様々ありますが、問題集をやる→間違えたところをチェック→1日後と3日後にもう一度→1週間後と1ヶ月後にもう一度がおすすめです。期間は人によりますが、私は答えや解き方を暗記してしまわないようにこのサイクルで行っていました。言い換えると、解き方を思い出して解くのではなく、きちんと解き方を考えながら解くようにしていたということです。解き方を暗記してしまうと応用が効きにくくなってしまうからです!伸び悩んでしまう人がしがちなポイントです。 以上の2点抑えてくだされば、キヨ猫さんはもっと伸びるかなと思います(すでにできていたら申し訳ないです_(._.)_)。あとはやはり量をこなしましょう。勉強は効率と量のかけ算だと思います。数学は特に解き慣れていくことが大切です。 まじでがんばってください!みんな応援しています!
東北大学農学部 HNO3
18
0
理系数学
理系数学カテゴリの画像
難関大学を目指す高校一年生の今できること
はじめまして!昔の自分をみているようでとっても応援したくなりました^^少しでもお役に立てればと思います。 私は高3のはじめまで塾に通うことはせず、ずっと高校の試験勉強を中心にしていました。数学は高校で4stepという教材を使っていたので1から復習しました。苦手な分野は基本問題からやって、得意な分野は発展問題にも挑戦しました。 高校生は今も授業がありますよね。それにテストも近づいていると思うので無理に並行しなくていいと思います。どっちも曖昧になってしまう方がもったいないです。 三角比は公式を覚えることがまず大事ですね。とにかくたくさん出てくると思うので覚えるのが難しいかもしれませんが、その公式の導き方もセットで覚えるといいと思います。 確率はみんな苦手です(笑)私もずっと苦手でしたが青チャートを使っていろんなパターンを習得しました。一度理解すると結構ポンポン進みますが、たまに理解が追いつかない時もありました(^^;)出来るようになった方がいいですが、無理だと思ったら基本的な問題をとれるようにするだけでいいと思います。私はそれで早慶受かってます(笑)苦手な分野は誰にでもあるものです。他に強みを作っておくといいですよ。青チャートをやったあとに赤チャートにも挑戦しましたが全てを理解出来たわけではなかったと思います。高3になったときにやりましたが、ある事象が起こる確率をPnして漸化式を用いてPnを求める問題は出来るようにするといいと思います(まだ先でいいと思います)。 今からちゃんと復習して身につけられていれば高3になったとき楽ですよ!頑張ってくださいね。応援しています^^
慶應義塾大学理工学部 sk__8
19
0
理系数学
理系数学カテゴリの画像
数学がずば抜けている人の共通点が知りたい!
僕の学校も東大2~3人、京大5~10人くらい毎年出していて、同じように数学がずば抜けている人がいました。その人の考えとかを真似たらかなり僕も数学が得意になった(駿台模試で偏差値75、進研模試で83程度。最初はどちらも60くらいでした)ので、完全にこれが答えだ!となる訳ではありませんが、説明させてもらいます。 まず1つに、数学が好きだとか、常日頃から数学的に考えることが得意であることが挙げられます。勉強以外のところですね。多くの人は数学の問題を見たら、1~2つの視点くらいからしか解答を考えることができないとおもいますが、こういう人達は常日頃から物事を無意識のうちに数学的に見ているからか、3つも4つも視点を持って物事、問題を見ることができています。 数学に置き換えてみましょう。例えば図形の問題に遭遇したとします。もしみなさんが三角比を勉強したばかりであれば、多くの人は三角比を使って(正弦定理や余弦定理など)問題を解こうとする、つまり問題を深くは見ることなく1つの視点に絞って解こうとするでしょう。 しかし、抜群に数学が得意な人は違います。三角比はもちろんですが、幾何学的に解けないか(幾何学的に、というのは、円周角の定理など図形的な視点から見ることです)、高2になっていればベクトルは使えないか、また、座標に置き換えて関数のように見れないか、など、様々な視点から見るようにしているのです。1つがダメであれば他の視点に切り替えられる要領の良さを持っていると言ってもいいでしょう。 はっきり言ってこういうのは先天的、つまり持っている人はポテンシャルで持っていることが多いです。またこういう人たちは数学の勉強をしていないという訳ではなく、勉強のやり方としてはみなさんとあまり大差ないでしょう。しかし、1問1問考えるときの思考の幅広さが違うため差が出てきてしまっています。 ちなみに最初に出てきた僕の友人の数学がずば抜けていた子は、最初からこうではありませんでした。つまり、このポテンシャルを後天的に(後から)身につけたのです。 この子はどうしたかというと、とにかく恐ろしい量の問題数を解き、あらゆる解法を頭の中に入れていました。どのぐらいかというと、高1の秋には早くも数3までの履修を終え、高2の夏までには阪大の過去問を30年分解き終えていたそうです。すごすぎますね。おそらく阪大の演習をしているときにこの視野の幅広さ、切り替えの速さを身につけたのだと思います。つまりは量がものをいうのです。余談ですが、この子は最終的に京大工学部に首席で合格しました。 つまり、この様なポテンシャル、才能を今から日常的に取り入れるのは厳しいので、まずは基本的な解法を頭に入れる。そして量をこなす時にとにかく視点を広く、多く持って切り替えられるようにしていく。これの繰り返しでしたかないです。質問者さんの学校にいる方はこの部分が日常的なところから鍛えられていたのでしょう。 正解かはわかりませんが参考になれば幸いです。
九州大学経済学部 riku
25
7
理系数学
理系数学カテゴリの画像
物化で学校でやったことを忘れることはどうすれば良いか
①模試での理科対策について まず模試の捉え方ですが、受験勉強をしている中で、定期的にある試験を受け結果をもらい、同じ目標を持つ人たちの中での自分の位置を把握するものが模試です。 なので、模試の対策をするという考えは好ましくないかなと思います🙇‍♀️ 普通に受験勉強をして、それが身についていれば模試の結果はよくなります! ②学校で習ったことを忘れないために 「学校で」習ったことというより、「自分で学んだこと」を忘れないようにするための対策として考えました🙇‍♀️ 自分で問題を解いたり、復習することが大事だと思います。 私は、高2のとき物理化学は学校でもらった「セミナー」を使って、学校で習った範囲を自分で進めていました。定期試験の前にその範囲を1周はするようにしていました。 その結果、高2の時点で、化学はセミナーの有機を2周、理論完璧、無機一応1周くらい 物理はセミナー力学部分が完璧、電磁気理解&基本問題はできるようになっていました。 また夏期講習、冬季講習などで塾にいき、学校で習った範囲と被った範囲を扱っていたので、テキストの問題を解説を見ずに解けるようになるまで解き、それが復習にもなり知識が定着したと思います🙇‍♀️ 塾に行かなくとも、長期休みの間に、問題集のつまずいた部分を自力でできるようになるまでやり直す、自分で選んだ参考書を読むなどをすると良いと思います! 少しでも参考になれば嬉しいです🙇‍♀️
東北大学医学部 no_cloud
36
11
不安
不安カテゴリの画像
数ⅠAを最初の1周履修する
(Ⅰ)勉強時間と休憩時間のバランス  勉強時間と休憩時間のバランスはそれで良いと思います。一般には、25分間の勉強と5分間の休憩を繰り返すポモドーロ・テクニックが集中力の維持には良いと言われています。しかし、実際に勉強してればよく感じることですが、25分ってすごい短いんですよね。その短さゆえに、途中で途切れてしまう勉強の続きを早くやりたいと言う思いが掻き立てられ、それがやる気や集中の維持に繋がるのだそうですが、そんな短い感覚でいちいち休憩を挟むのは煩わしいと感じもするわけで、そうなるともう個人の好みによると思います。今のバランスで全然問題ないと思います。  勉強と休憩のバランスはそれでまぁ良いんですが、勉強時間の三分の一を数学が占めていることは少し気になりました。一橋となると、二次試験でも4教科で、しかも社会の難易度が鬼らしいですね。これに加え、共通テストもありますから、むろん優先度というものはあるとはいえ、科目毎の勉強時間のバランスは大丈夫なのかな?と少し心配です。何かご自身でお考えがあるのでしたら、それで良いのですが。 (Ⅱ)休憩の取り方  私はよく外に出て散歩していました。イヤホンで好きな曲を聴きながら、塾の周辺をぐるっと一周して、また自習室に戻り、勉強再開です。まぁ、それも頻繁にやっていたのは高2の頃で、高3になると、どうしても集中が切れてしまったという時はやっていましたが、それ以外は尿意を催してはばかりに行くことが休憩の代わりになっていた記憶があります。相談者様は有料の自習室ということで、外に出るのは難しい場合は天井を見つめて何も考えない時間を数分作るというだけでも結構良い休憩になると思います。適度に気分転換ができれば何でも良いと思います。 (Ⅲ)おすすめの参考書とその性質  最難関レベルの問題集では、旺文社の上級問題精講を私は使っていました。部活の先輩(学年で五指には入る。現役で阪大に行きました)が使っていたことと、実際に書店で色々見比べて「やりたい」と思ったものだったことが主な理由です。解説が非常に詳しく、また平易であることが特徴です。類題も豊富に40問ほどあって、メインの問題だけでは物足りない方はこれをやると良いでしょう(そもそもメインの難易度が高いので、そんな猛者は少ないでしょうが)。一橋の数学は文系最難関ですから、最終的にはこのレベルの問題集を目指して勉強していけば良いんじゃないでしょうか。  参考書に関して一つ気になったのが、網羅系(黄チャート)をやった上で河合塾の重要事項完全習得編をやる必要があるのかということです。もちろん、絶対にやるなとは言わないし、やれるならやったほうが基礎の定着はより確実になるだろうとは私も思います。しかし、黄チャートの難易度レベルと網羅系参考書であるという性質上、学習内容が重要事項完全習得編と被りはしないか、という懸念もあります。もし難易度レベルが同じであるならば、重要事項完全習得編ではなく実戦力向上編の方で、一、二段階ほどレベルの高い問題に触れた方が良いのではないかと思いました。これも、オンライン塾の先生から勧められたとか、ご自身でお考えあっての選択だと言うならそれで良いですが。 (Ⅳ)計画を立てる上での留意点・アドバイス  前に一度別の回答で書いたことですが、あまり具体的すぎる計画やスケジュールは立てないようにした方がいいと思います。計画の立て方としては、①まず自分の得手不得手を分析し、②苦手をなくす方向で、いつまでにどの苦手分野を克服したいかという小さな目標を各所で立てていく、というのがシンプルで良いと思います。詳しくは「ビリギャルのように」という相談に対する私の回答(3)に書いてありますので、もし知りたいならそちらを読んで頂ければ詳細を知れます。 (Ⅴ)習慣付けるためのアドバイス  どんな習慣も、ひたすら継続することでしか身につかないので、とにかく続けましょう。といっても、例えば、それまで全然勉強したことのない人が、いきなり今日から一日12時間勉強しようとしても、ハードルが高過ぎて頓挫してしまうことは火を見るより明らかなので、どんな小さなことでもいいから、そこから段階的にレベルを上げていく方法が確実です。しかし、これはある一定のレベルの習慣が身につくまでに相応の時間を要するというきらいのある諸刃の剣でもあります。浪人生ということで、あまり時間を費やしたくないでしょうから、ある程度は段差の大きい階段を登らなければならないことを覚悟する必要はあるかもしれません。 (Ⅵ)その他のアドバイス  数学の勉強に力を入れているようなので、以下、参考までに数学に関しての私見を書いておこうと思います。  教科書など基礎レベルの問題を完璧にしても、本番レベルの発展問題が直ちに解けるようになることはありません。なぜなら、基礎レベルの問題は、大抵公式・定理とその使い方が正しければ答えが出せる問題です。例を挙げるなら、「直角三角形において、直角を構成する各二辺の長さの平方の和は、当該直角三角形の斜辺の長さの平方に等しい」という三平方の定理に対し、直角を構成する各二辺の長さがそれぞれ3と4だったときの斜辺の長さを問う問題の如きです。これに対し、入試本番の発展レベル(就中一橋のような最難関レベル)の問題は、その公式や定理を使える状態まで持っていくことが難しいからです。先の例で言えば補助線を引かなければ直角三角形が見えてこない場合や、そのほか方程式をある程度変形しなければならない場合、使いたい公式や定理を使える状態にするために別の公式や定理を使わなければならない場合など種々雑多です。問題で与えられた具体的条件を変えてはいけない以上、こちらの見方を変えるより他に仕方がありません。そのような、発展問題を解く上で必要となる視点を研ぎ澄ませるには、実際のそのレベルの問題に取り組む以外に方法はありません。  そのため、とりわけ浪人生である相談者様は、難易度の高い問題にも定期的に取り組んだ方がいいと私は思います。(Ⅲ)で実戦力向上編をお勧めしたのも、そのためです。一応は現役時代に一通り数学を学んでいるわけですから、一から基礎に戻ってやり直すことが悪いとは全然思いませんが、かといって基礎レベルの問題ばかりに囚われずに難易度の高い問題にもたくさん挑戦して欲しいですね。  それから、問題を解く上で意識すべきことは、似たような問題にも応用できるような抽象的・一般的な法則、あるいはそういった工夫や考え方を、その問題から一つでも得ようと貪欲になることだと思います。私が実際にやっていたこととして、数学の問題演習はノートでやっていたのですが、問題を解いて採点や自己添削を一通りした後に、その問題で必要だった公式・定理や、二変数の式の問題だったら「変数を減らす工夫をする」、相反方程式の問題だったら「x^2で割る」みたいな、その問題を解くに当たって必要だった工夫をすぐ下に色ペンで書いて強調してました。他には、模試等で解けなかった問題があれば、解説を見て「こういう発想をすればよかったのか」といったことなどを、別のノートに参考書風にまとめたりしてました。大事なのは、とにかくその問題から次につながる何かを見つけ出そうとすることですね(その意味では「帰納すること」だと言ってもいい)。でないと、いくら問題を解いても、一向に思うように成績が伸びないということにもなりかねないと思います。 (Ⅶ)最後に  「志がいくら低いとはいえど、人の目標を否定する人達と関わっていては自分までくだらない人間のままに終わってしまうと感じ、一念発起して頑張っています。」という意気込みに心を打たれました。辛酸を舐めることもたくさんあるでしょうが、めげずに頑張ってください。ほとんど書き殴った感じで、全然まとまってないように思えて申し訳ありませんが、ひとまずこれにて回答を終了いたします。
北海道大学法学部 たけなわ
4
3
文系数学
文系数学カテゴリの画像
定期考査で難しい問題が解けるようになれるワークとは
こんにちは、東京大学の学生です。 学校の物理の問題集が物足りないということにとても共感しました。そもそも、学校の授業は公式暗記や適当な解釈で終わっていて、なかなか理解が深まりません。そこでおすすめなのが、駿台文庫の新物理入門演習です。これならば正確な議論を基にした回答のできる問題が多数収録されています。おすすめです。 蛇足ではありますが、私のおすすめ物理の勉強法をお伝えしようと思います。まず、公式を鵜呑みにしないこと。これは理系科目全てに言えることですが、意味を理解した上で使いましょう。次に、座標をとることです。座標の設定は物理の基本です。これが曖昧な人は必ず符号でミスをするはずです。最後に、グラフや式から意味を読み取る練習をすることです。これにはある程度の数学が必要ですが、微積分や三角関数など、多角的な視野を持って、問題に取り組むことです。長くなりましたが、役に立てば嬉しいです。
東京大学理科二類 せなかたこ
20
0
物理
物理カテゴリの画像
なんとなくで解いてしまう
こんにちは😃 現代文を解く上で最も大事なことはその文章が何を言いたいのかということを掴むことだと思います。 特に評論文などは筆者の主張が言葉を変えて、何回も登場してきます。だから、キーワードとなる語や繰り返し出てくる語にはチェックを付けて読んでいました。 また、二項対立で論じられている文章では一方の事柄については普通に線を引いて、もう一方の事柄については波線を引いていました。同じように筆者の中でプラスの事とマイナスの事も後から見て分かるように違うマークを付けて区別していました。共通テスト模試は時間制限も厳しく、丁寧な読解はなかなか厳しいですが、練習の中で主張の言い換えを見つけたり、対立軸を意識する事が大事になってくると思います。あと、当然ですが接続詞や文意を変えたりする表現には気をつけて読みましょう! なので、現代文を解く上で身につける力としては、その文章の言いたいことをできるだけ早く見抜くことです。 なかなか難しいことですが、これに関しては問題演習をして経験値を積むしかないです。実際にペンを持って言葉と言葉をつなげたり、文章にマークや線を引く練習をしていくことが最初の内はベストだと思います。 とにかく、自分の中で筆者の意見や考えが分類できていることが分かり、整理されていれば大丈夫です🙆‍♂️ また、完璧に筆者の言いたいことが分からなくても全然オッケーです。あくまで、問題に正解することがやるべきことで、主張を理解するのはそのための足掛かりですから。 あと、選択肢を消す際に数字や記号のところを消すのではなく、間違っている箇所に印を付けるクセも大切です。一発で答えが出せる設問もありますが、共通テストレベルの問題でもイヤらしい問題が多く、その場合消去法でしか消せない時があり、わずかな違いが大切になってくるからです。 それから、質問者さんがどのような形で現代文を取り組んでるか分かりませんが設問を先に読んで問われることを先に分かっておくことは共通テストの現代文を速く解く秘訣だと思います。選択肢までは見ないですが、共通テスト特有の図表やグラフの問題は先に見ておくと結構すぐに解けることがあります。 最後に、私もいつもできたわけではないですが、自分と文の筆者、そして作問者の3者を問題を解く際に意識してました。なぜこの文章を大学側が出し、ここに傍線部を持ってきているのか、共通テストであれ、個別入試であれ国語という入学試験である以上必ず意味があるはずです。問題を作っている人の意図や大学側の伝えたいメッセージを考えながら俯瞰して読めことができるようになれば現代文に関しては大丈夫です。 現代文の読解は人それぞれなので私の読み方が必ずしも正しいとは限りませんが、是非参考にして下さい! 受けておいた方がいい模試に関しては河合塾の早慶レベル模試や代ゼミの早大入試プレなどです。 やはり冠模試は実際の受験者が多く受けるので、自分の立ち位置を知る上で非常に役に立ちます。 また、質問があればぜひ聞いてください!
慶應義塾大学経済学部 Ryo
29
7
模試
模試カテゴリの画像