UniLink WebToAppバナー画像

数学の解法の身につけ方

クリップ(16) コメント(0)
7/4 6:44
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

トニー

高卒 千葉県 秋田大学医学部(55)志望

今フォーカスゴールドをやっていて、とりあえずアスタリスク1、2は一周終わらせたんですが、解法が答えを見れば理解できるけど自力でできない問題が半分ぐらいあります。毎回その日に解いたやつは完璧にしようとしているのですが、後日解いてみると途中で手が止まったりします。理解した後、答えを見ないで解けるようにするにはどうすればいいですか?またどんなやり方が効果的ですか?

回答

回答者のプロフィール画像

RIZ

大阪大学経済学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
数学には「解法の必然性」があります。つまりその解法をとるためには必ず理由があるわけです。 簡単な例で言うと、まず関数f(x)の実数解の個数を求める問題があったとします。f(x)が2次式なら判別式を使えばよいとすぐに分かると思います。次に2つの関数f(x)とg(x)が共有点をもつときの条件を求める問題があったとします。この問題の場合、単に関数f(x)とg(x)を連立して得られた関数が2次式なら判別式を使えばいいと暗記してしまっていると、すぐに忘れてしまいます。しかしなぜ判別式を使うのかを理解していれば忘れることは無くなります。つまり関数f(x)とg(x)が共有点を持つことが、関数f(x)とg(x)を連立する、すなわちそれは関数f(x)とg(x)の交点を表すわけですが、その交点が存在することと同値である。つまり関数f(x)とg(x)を連立して得られる関数が少なくとも1つ実数解を持つことと同値である。なので2次式であれば判別式を使って実数解を持つ条件を求めればよいと理解できるわけです。このように一見すれば1つ目の例と2つ目の例は異なる問題のようにみえて、判別式を使う点では同じなのです(便宜上2次式だと仮定してます)。 入試問題における数学ではこのような解法における普遍的なパターンが存在します。上の例はとても単純な例ですが、他にも図形問題を見たら、初等幾何で解くのか、ベクトルで解くのか、座標利用で解くのかをまずは決めるなど、普遍的な思考パターン、つまり「解法の必然性」があります。そうしたパターンを把握することで、多くの問題に対応できるようになるのです。上の例でも見たように、この2つの問題を全く違うものと捉えていては無数にある入試問題の数学には太刀打ちできません。2つは実数解を持つための条件という点で同じ問題だと捉えることで記憶することもずっと簡単になります。そうした「解法の必然性」は無限にある入試問題を有限にしてくれるわけです。なので「解法の必然性」を理解することが必要なのです。 ではその「解法の必然性」を身につけるにはどうすれば良いのか。それは解法に対して「なぜ?」を考えることです。なぜその解法をとるのかを常に考えることで、その思考パターン「解法の必然性」が見えてきます。恐らくですが質問者さんの場合、ある問題に対して解答をなぞるだけになってしまっているのではないでしょうか。なのでその日は覚えていても、数日経つと「なぜ」その解法を取るのかわからないために手が止まってしまうという事です。なので、今後は「なぜ」その解法を取るのか常に意識してみることが効果的な学習法だと考えます。 最後になりますが、どうしてもその「解法の必然性」つまり思考パターンというものがどういうものかわからない場合、「数学モンスター」という無料で数学の問題演習ができるサイトを見ていただければ理解の助けになるかと思います。1つの問題に対してその問題を解くための思考パターンを紹介してくれるというような解説になっています。しかしレベルはそこそこ高いので、本格的に取り組み始めるのはフォーカスゴールドであれば少なくともアスタリスク3のレベルまではできるようになってから取り組むことをおすすめします。下記にそのサイトのリンクを貼っておきます。 http://mathematics-monster.jp

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

数学の解法の身につけ方
数学には「解法の必然性」があります。つまりその解法をとるためには必ず理由があるわけです。 簡単な例で言うと、まず関数f(x)の実数解の個数を求める問題があったとします。f(x)が2次式なら判別式を使えばよいとすぐに分かると思います。次に2つの関数f(x)とg(x)が共有点をもつときの条件を求める問題があったとします。この問題の場合、単に関数f(x)とg(x)を連立して得られた関数が2次式なら判別式を使えばいいと暗記してしまっていると、すぐに忘れてしまいます。しかしなぜ判別式を使うのかを理解していれば忘れることは無くなります。つまり関数f(x)とg(x)が共有点を持つことが、関数f(x)とg(x)を連立する、すなわちそれは関数f(x)とg(x)の交点を表すわけですが、その交点が存在することと同値である。つまり関数f(x)とg(x)を連立して得られる関数が少なくとも1つ実数解を持つことと同値である。なので2次式であれば判別式を使って実数解を持つ条件を求めればよいと理解できるわけです。このように一見すれば1つ目の例と2つ目の例は異なる問題のようにみえて、判別式を使う点では同じなのです(便宜上2次式だと仮定してます)。 入試問題における数学ではこのような解法における普遍的なパターンが存在します。上の例はとても単純な例ですが、他にも図形問題を見たら、初等幾何で解くのか、ベクトルで解くのか、座標利用で解くのかをまずは決めるなど、普遍的な思考パターン、つまり「解法の必然性」があります。そうしたパターンを把握することで、多くの問題に対応できるようになるのです。上の例でも見たように、この2つの問題を全く違うものと捉えていては無数にある入試問題の数学には太刀打ちできません。2つは実数解を持つための条件という点で同じ問題だと捉えることで記憶することもずっと簡単になります。そうした「解法の必然性」は無限にある入試問題を有限にしてくれるわけです。なので「解法の必然性」を理解することが必要なのです。 ではその「解法の必然性」を身につけるにはどうすれば良いのか。それは解法に対して「なぜ?」を考えることです。なぜその解法をとるのかを常に考えることで、その思考パターン「解法の必然性」が見えてきます。恐らくですが質問者さんの場合、ある問題に対して解答をなぞるだけになってしまっているのではないでしょうか。なのでその日は覚えていても、数日経つと「なぜ」その解法を取るのかわからないために手が止まってしまうという事です。なので、今後は「なぜ」その解法を取るのか常に意識してみることが効果的な学習法だと考えます。 最後になりますが、どうしてもその「解法の必然性」つまり思考パターンというものがどういうものかわからない場合、「数学モンスター」という無料で数学の問題演習ができるサイトを見ていただければ理解の助けになるかと思います。1つの問題に対してその問題を解くための思考パターンを紹介してくれるというような解説になっています。しかしレベルはそこそこ高いので、本格的に取り組み始めるのはフォーカスゴールドであれば少なくともアスタリスク3のレベルまではできるようになってから取り組むことをおすすめします。下記にそのサイトのリンクを貼っておきます。 http://mathematics-monster.jp
大阪大学経済学部 RIZ
16
2
理系数学
理系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
34
8
文系数学
文系数学カテゴリの画像
過去問をどうしたら解けるようになりますか?
こんにちは 【数学】 網羅系問題集(青茶 or Focus or 1対1)のどれかもってますか?持っていたらそこに載っている例題は最高難易度以外の問題なら9割5分問題見た瞬間解法が言えるレベルまでやりましょう 最低でも二次関数、集合命題、三角比、確率、整数、ベクトル、数列、図形と方程式、三角関数、指数対数、微積分、複素数、極限はできるようにしましょう そのためには毎回【なんでこの問題でこの解答をするのか】と【その問題のテーマ】を意識してやればいいです なんで?の部分は青茶の解答や指針のところに書いてあるんで分からなかったらそこ見れば大丈夫です テーマに関しては問題番号の横に堂々と書いてます(例えば整数問題なら余りで分類、不定方程式など) 「この問題なら余りで分類で一発」くらい言えれば大丈夫です 時間ないと思うんで、どうしても分からない、何度やっても覚えられないところ以外は書かずに問題見て解答見て、理解するで平気です これは単純暗記ではないです 「原理を理解し、知識として蓄える」作業です なにも考えずに覚えるのでなく、問題文のこの情報から分かるのはこれだから、そりゃこの解法とるだろ と毎回納得してください これちゃんとやれば、理科大数学なら満点狙えるレベルの学力はつきます 一度理解した問題はやらなくていいんで、回数重ねるごとにやる問題は減るんで最後の方は1日で1A2B3を1周できるくらいになるんで大丈夫です はじめの方はインプット重視、中盤からアウトプットめちゃめちゃ意識してやってください 本当に自分はなにも見ない状態でこの問題の解答書けるのか?と毎度気にしてください これが終わり次第完全アウトプット作業に移りましょう 具体的には何かの問題集から5,6問ピックアップして制限時間を入試の時間に合わせて模試形式で演習してください これが今まで試したアウトプットの方法で一番いいです 本気で解くので終わった後の解説理解の時に得られるものがいわゆる普通の問題集解いた時より圧倒的に多いです 【英語】 単語熟語文法音読、毎日やりましょう 他の勉強の合間の休憩でいいです 音読は読むスピードを一気に早めるためにやります 長文はパラグラフ(段落)ごとでテーマを見つけてください 1パラにテーマは一個です 主題説明なのか、例示なのか、対比なのか、理由説明なのか それが分かるだけでその段落の方向は見えるので、分からない文章あってもそんなにダメージ食らわなくなります 複雑な文章が来たら、英文解釈(SVOCMふるやつ)やりましょう 英文解釈すればほとんどの文は5文型のどれかに帰着します そうやって構造を簡略化すればだいぶ見通し良くなります おおかた修飾しまくったり、接続詞で繋いだり、ただの付加情報(メイン情報でない)だけの副詞節などがダラダラ繋がってるだけなんで あとは倒置と省略ですが、これは予備校の授業か参考書を見てください 【化学】 化学は理論、無機、有機にわかれますね 無機→暗記するだけです やってください 問題解きながらやると覚えやすいです 有機→暗記がほとんどです 覚えましょう 化合物の式、構造式、反応の仕方くらいです これは途中から、ある程度覚えてから、問題解きながらやるといいでしょう 理論→暗記と思考訓練です 暗記系は覚えましょう 思考訓練は主に平衡反、反応熱、気圧、電池ですかね 予備校のテキストでも、めちゃめちゃ簡単な参考書(本当に初学ならばシグマベストの理解しやすい化学くらいでいいです)で理解しましょう 時間ないと思うんで、数学メインがいいと思います ちゃんとこなせれば志望大学に合格する可能性は普通にあるしやらなければきついでしょう 過去問は最悪年越えてからでも間に合います ほとんどわかってないうちから過去問を解いてもプラスになることはないでしょう どんな問題か見るだけならいいと思いますが なんで、とりあえず過去問のことは考えなくて大丈夫です という感じです 内容、方針についてもし質問があれば答えます 残りの受験勉強頑張ってください🙏合格を祈っています
早稲田大学先進理工学部 エムジェー
268
7
過去問
過去問カテゴリの画像
なんとなくで解いてしまう
こんにちは😃 現代文を解く上で最も大事なことはその文章が何を言いたいのかということを掴むことだと思います。 特に評論文などは筆者の主張が言葉を変えて、何回も登場してきます。だから、キーワードとなる語や繰り返し出てくる語にはチェックを付けて読んでいました。 また、二項対立で論じられている文章では一方の事柄については普通に線を引いて、もう一方の事柄については波線を引いていました。同じように筆者の中でプラスの事とマイナスの事も後から見て分かるように違うマークを付けて区別していました。共通テスト模試は時間制限も厳しく、丁寧な読解はなかなか厳しいですが、練習の中で主張の言い換えを見つけたり、対立軸を意識する事が大事になってくると思います。あと、当然ですが接続詞や文意を変えたりする表現には気をつけて読みましょう! なので、現代文を解く上で身につける力としては、その文章の言いたいことをできるだけ早く見抜くことです。 なかなか難しいことですが、これに関しては問題演習をして経験値を積むしかないです。実際にペンを持って言葉と言葉をつなげたり、文章にマークや線を引く練習をしていくことが最初の内はベストだと思います。 とにかく、自分の中で筆者の意見や考えが分類できていることが分かり、整理されていれば大丈夫です🙆‍♂️ また、完璧に筆者の言いたいことが分からなくても全然オッケーです。あくまで、問題に正解することがやるべきことで、主張を理解するのはそのための足掛かりですから。 あと、選択肢を消す際に数字や記号のところを消すのではなく、間違っている箇所に印を付けるクセも大切です。一発で答えが出せる設問もありますが、共通テストレベルの問題でもイヤらしい問題が多く、その場合消去法でしか消せない時があり、わずかな違いが大切になってくるからです。 それから、質問者さんがどのような形で現代文を取り組んでるか分かりませんが設問を先に読んで問われることを先に分かっておくことは共通テストの現代文を速く解く秘訣だと思います。選択肢までは見ないですが、共通テスト特有の図表やグラフの問題は先に見ておくと結構すぐに解けることがあります。 最後に、私もいつもできたわけではないですが、自分と文の筆者、そして作問者の3者を問題を解く際に意識してました。なぜこの文章を大学側が出し、ここに傍線部を持ってきているのか、共通テストであれ、個別入試であれ国語という入学試験である以上必ず意味があるはずです。問題を作っている人の意図や大学側の伝えたいメッセージを考えながら俯瞰して読めことができるようになれば現代文に関しては大丈夫です。 現代文の読解は人それぞれなので私の読み方が必ずしも正しいとは限りませんが、是非参考にして下さい! 受けておいた方がいい模試に関しては河合塾の早慶レベル模試や代ゼミの早大入試プレなどです。 やはり冠模試は実際の受験者が多く受けるので、自分の立ち位置を知る上で非常に役に立ちます。 また、質問があればぜひ聞いてください!
慶應義塾大学経済学部 Ryo
26
6
模試
模試カテゴリの画像
解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
62
6
文系数学
文系数学カテゴリの画像
形式的に覚えてしまう
数学と化学に関しては私も現役の時は心当たりがあります。特に数学はセンス的な要素が強いと思っていたので、解ける解けないの差が激しかったです。 さて、少しひねった問題が来ると解けないのが悩みということですが、まず、最低限の勉強ができていることが大事です。おそらくそこらへんはテスト期間で補っているので大丈夫かと思います。 その中で同じような問題で少しひねっている問題というのはどうすればいいかわからないと思うかもしれませんが、解き方としてはひねる前の解き方と同じようなのに気づくことはできているでしょうか?そのような問題の模範解答をじっくり吟味しているでしょうか?その時解けなかった問題はしょうがないですが、そのあとのフィードバックが大事です。そして、この解法やったことがあるなと感じることが大切です。 具体的に述べるのは難しいですが、例えば二次方程式の2解が正の値をとるための条件は f(0)>0 軸>0 判別式≧0 で必要十分ですよね。これは大丈夫でしょうか? これの少しひねった問題が例えば二次方程式の解が0<x<1の範囲で持つ条件はどうでしょうか? これは場合分けが必要ですが、そのうち2解がともに0<x<1の範囲の時はどのような条件かというと f(0)>0 f(1)>0 0<軸<1 判別式≧0 で必要十分です。これと先ほどの上の条件と比較すると同じような感じですよね?つまり端点のみに具体的な数字の条件があるときにこのような条件で進めていくのがセオリーです。 上の解法を知識ゼロから解けと言われたら厳しいものがあるかと思いますが、一通り通っていることなら問題を見たときに「あっ、この問題はこの解法かな?」と瞬時に判断できるはずです。その感覚が大事です。「あー、これどうすればいいんだっけ…?」みたいな感じになっているのは良くないです。 これは勉強する時は問題を解き始める前に一瞬立ち止まって考えください。これを意識するしないとでは雲泥の差です。これは私自身、現役の時には気づかなかったことですが、浪人してからはこのことを意識するだけで、解ける問題のレパートリーが増えました。 闇雲にただ問題をこなすだけなら、むしろその場しのぎになってしまいます。それなら、数学の問題とかは時間がないのなら問題をみてこのような解法でいけばいいかなと思えるなら解かなくていいです。 要は、解き方に“意識“して問題演習を行ってください。時間のかける方はこっちの方です。 模試の前とかは、全国模試であれば定期テストなどでできなかった問題の教科書レベルの類題を確認する感じでいいと思います。高校生は部活等で時間がないと思われますので。
慶應義塾大学理工学部 シュンペーター
21
0
理系数学
理系数学カテゴリの画像
数学偏差値40台が数学を人並にできるために夏にやるべきことは
 こんにちは。文系にとって数学はどこまでも厄介な科目ですよね。  僕も国立文系志望で、文系数学を勉強していました。僕は元々は数学が本当に不得意で、中3の頃は定期テストで赤点(30点)ギリギリだったり、Z会の模試でまさかの0点を叩き出しました笑。  そんな感じで焦りを覚え、高1から数学に力を入れ、高2の春の進研模試の数学で偏差値80を取ることができました。そこで、僕なりに数学を苦手科目から得意科目にした方法をななせさんに紹介しますね! 1.数学の勉強(チャートの使い方)  数学の勉強は次の3つのステップだと思って下さい。  ①単元理解,②典型問題のインプット.③実践問題でアウトプット。 ①まずは単元について理解します。基本的には学校の授業がこのステップにあたります。教科書に書かれている内容を正確に理解しましょう。教科書や学校の授業で理解できない場合は、参考書を利用して下さい。「面白いほど分かるシリーズ」のように単元ごとに、1冊で詳しく説明しているものが良いと思います。 ②単元を理解したら、その単元で典型とされる問題とその解法をインプットします。例えば、二次関数の最大最小値の問題を見て、「軸と定義域の関係で場合分けだな〜」といった具合に、すぐに解法の方針を立てられるようになることです。このステップでは、チャート式のように典型問題を網羅している参考書が良いです。どのチャートにするかは、志望校をみて、決めて下さい。  では、チャートをどのように使うかですが、ここでは次の方法をおすすめします。 ⅰ)1度目は実際手を動かして解き、正解した問題をチェックしましょう。少し考えて分からなければ、すぐに解答を見て理解して下さい。 ⅱ)1度正解した問題に関しては、2度目は細かい計算はせず、解答の方針を書き出し、解法があっていたら2つ目のチェックをしましょう。 ⅲ)2つチェックがついているものに関しては、3度目は頭の中だけで、解法を思い浮かべ、あっていたら3つ目のチェックをしましょう。その問題はインプット完了です。  以上のように、全ての問題で、3つのチェックが付くまで、何度も周回しましょう。  このステップで、この単元理解してるか怪しいなと思ったら、ステップ①の単元理解に戻って下さい。 ③前のステップのインプットは解法を覚え、いわば手元にカードを揃えるステップでした。次にアウトプットで、問題に向き合い、どのカードを、どのように、どういう組み合わせで出すかを練習します。  問題演習はすぐに、共通テスト実践問題集で良いです。駿台などの各予備校が出している、共通テスト問題集を解きましょう。その際、時間と点数をきちんと記録して下さい。最初は時間内には終わらないと思いますが、共通テストには傾向があります。解いていくうちに、その傾向が見えてくるので、効率化していきます。また、センター試験の過去問も良いと思います。 2.どの単元から始めるか  これは難しい選択ですが、やはり共通テストを意識して、必出の分野、そして自分が選択する分野を優先的にやるべきでしょう。その中で最も基礎的で重要な単元は、数IAであれば「数と式」「二次関数」。数ⅡBであれば「微分・積分」です。 3.夏期講習について  共通テスト対策というのが具体的にどういうものなのかによります。例えばそれが共通テストの問題を実際に解いて、簡単に解説するというものであれば、ある程度の基礎が無いと参加する意義は少ないと思います。他方で、単元理解の復習から行い、その単元について共通テストで演習するというものであれば、ななせさんが今参加しても意義があるのでは無いでしょうか。  そもそも夏期講習というものは、学校のレベル、先生のレベルに大きく依存するものです。ひどいものだと、受験生の貴重な夏休みの時間を奪うだけのものもあります。であれば、事前に先生に詳しく夏期講習の内容を聞き、相談し、必要とあらば一度参加してみるのも手です。    このように僕の個人的な意見を述べましたが、とにかく情報を収集し、本当に今の自分に必要なのかをじっくり考えてみて下さい!
慶應義塾大学法学部 ひろ
123
17
文系数学
文系数学カテゴリの画像
数3の範囲が終わってない
私も受験生時はフォーカスを使ってました! 数学3はパターン問題が非常に多いので、例題番号の隣に書いてあるテーマ毎にこんな解法で解くんだなと納得しながら演習をしてました。 例えばAn+1 =f(Xn) のパターンは平均値の定理を使って最後にはさみうちの原理。476ページ筑波大 とか、例題212(445ページ)導関数とグラフの対称 では直線x=aに関して対象ならf(a -x)=f(a +x) などのように問題に合わせて解放のパターンを知っておくと解答のとっかかりがまるで変わってきますよ! ポイントは例題の回答の最後に掲載してあるFocusを意識して見直すとパターン参考にするといいです! 数3は微積の分野が頻出なので、複素数と並行的にその分野を集中的に演習することをお勧めします。 繰り返す上で、個人的に練習問題は解かずに例題だけでも十分ではないのかな?と思います。現に私も練習は解きませんでした。その代わり,解放を覚えるくらいまで例題を何度も解き回し、腕試しに章末をやってました。 書いてやるのかそれとも口で確認がいいかとのことでしたが、私の意見では書くことをお勧めします。 数3は計算が半端なく多いので(特に積分)実際に書いて練習した方が計算力アップに繋がり、本番でのミスも減ると思いますよ! ただ、問題のパターンや解放の手順を思い出す確認をするときなんかは、口で確認してもいいかもしれませんね。その方が時間が短縮でき多くの問題のパターンに触れることができると思うので! フォーカスは過去問と並行しながら最後まで使い続ける方がいいと思いますよ! まだニヶ月ほどありますが、最後まで頑張ってください!応援してます♪♪♪
九州大学工学部 なつ
0
0
理系数学
理系数学カテゴリの画像
60日切りました。何をするべきですか?英語のリスニングが全くできません。
できるよ。今心に燃えるものがあるならそれは大切にしよう。やってやろう。モチベは歪んでようがなんでもいい、腹立つ推薦勢見返してやるでも全く問題ない。ここからは訳分からん量をそのモチベでこなしていこう。 模試結果見た感じ直ちに鍛え上げるべきなのは 国語 英語 世界史 今すぐ各科目の共通テスト予想問題集を手に入れよう。駿台出版は3科目ともマスト。英語に関してはZ会もマスト。国語と世界史はセンター試験の分厚い赤本を一冊購入しよう。多分一冊で10数年分くらい収録されてると思います。 ・国語 文系なら140点は何がなんでも死守しなきゃいけない。センターの過去問題集はもうやった?実はセンター試験も共通テストもぶっちゃけそこまで変わりません。強いて言うならセンターに資料読み取り的な要素を付け加えてダルくした感じです。要はセンターできない人に共通国語は解けないという話です。まずは解いてない年が収録されてる赤本買って新しいやつから順に片っ端から解いてください。解く順番なんだけど基本は漢文→古文→現代文にしてもらいたいところ。個人の好みとかもあるからなんともいえないけど、この順番が鉄板だし1番効率いいとは思います。なんでかというと現代文に1番時間使いたいから。古漢はどんなに勉強しても割とみんな平等に失点して差が出ないから、現代文をパーフェクト近く得点することが国語全体の戦略になる。また漢文は古文に比べてシンプルで得点しやすいことが多い。漢文に関しては毎回満点を狙おう。時間配分は漢文15古文20現代文22.5×2が理想的。いずれにせよ古文漢文は合わせて40分以内に済ませることを意識してほしい。なんなら40分でも多いくらい。試験時間の半分以上を現代文に注ぐイメージだね。赤本が終わったら共通テスト予想問題に移ろう。ここでも戦略は上記となんら変わらない。ひたすら解こう。大問ごとに時間測るとかはやらなくていい。全部80分ぶっ通しでやって時間配分を体に刻み込むよ。一年分終わるごとに即採点。間違えたところは解説読んで解説者の思考を盗もう。そして、何故自分がその思考に至らなかったのかを考えよう。漢文古文に関しては抜けてる知識等あったらどんどん吸収し、関連知識もおさらいしておくと尚良い。点数なんて気にしなくていいから、どの知識を押さえていれば目標点に届けたのかだけを考える癖をつけよう。漢文古文は知識ゲーと思え!!文法は隙がないくらい詰めよう。 英語(★からは特に集中して読んでほしい!) とにかく予想問題をしばこう。センターには触れなくていい。目標時間配分を決める→その通りに解く→即採点・見直しのサイクル。大問4までを30分程度で終わらせるのが目標。大問5,6は急に分量が増えるうえに大問4までの茶番(簡単という意味ではない)みたいな問題とは異なりちゃんとした長文問題なのでしっかり時間かけてパーフェクト近くを目指したいところ。因みに大問4までを茶番と表現した理由は、英語力というよりは情報処理能力を問う様な問題構成になっているから。英語が苦手ということだけど多分時間が足りないんだよね。分かるよ。でも帰国子女レベルにできるやつ以外は基本みんな時間足りないと断言できるからそこは安心してね。さて、なんで時間が足りないかというと、、、もうとにかく文量がハンパないからだよね笑。(お分かりの通り笑笑)あれをまともに読んでたら普通間に合わないよ。だから今後は情報の取捨選択を徹底してもらいたい。実際の問題見返して貰えば分かるんだけど、問題とその答えに関係ない情報って結構多いよ。特に大問1〜4が顕著。ようわからん文章に加えて資料や表が登場するじゃん?あれとまともに向き合うと頭パンクするよね。だけど本当に必要な部分って一部なんだよ。君は問題さえ解ければいいんだから、無駄なところはさっさと読み飛ばす癖をつけよう。初めは難しいかもしれないけど少なくともそういう無駄なところがあることだけは意識して読もう。 ★例えば会話文的な問題は、とりあえず詳しいところはほっといて会話の概要だけ掴むんだ。「こいつら大体話してる内容こんな感じか」って思いつつ読みながら段落ごとにキーワードを一言二言だけメモするんだ。それが終わったらここで問題を読む。一度会話内容を把握しているし、段落ごとに書かれてる内容もキーワードメモによって一目瞭然だから解くスピードは段違いに速くなる。もし問題を解くためにもっと深い読み取りが必要ならここで初めて読めばいいわけだね。 資料読み取り系は情報が氾濫しているからまずは問題から読むんだ。「出題者はこういうことを聞いてきてるな」って思ったら、そこを意識しながら文章や資料を読んでいく。そうすれば自然に大事なところだけに重点を置いた読み方ができる訳だ。 もっと細かいテクニックの話をすると、For example〜とかに代表される具体例マーカーの後ろは基本カッコで括って「具体例」とだけメモして(しなくてもいい)読み飛ばして構わないよね。だってそこの内容がなんであろうと知ったこっちゃないから。例えば、、、 花子さんって可愛い。例えるなら〇〇とか△△かな。 結局この人が言いたいのは花子さんが可愛いことだけですよね。〇〇、△△の中身がなんであろうと言いたいことは花子さんの可愛さだけ。似た様なことが逆接マーカーでも言えます。 花子さんってお金持ちだしスタイルいいし可愛いよね。でもさ、、、 続きには何がきますか?性格が悪い?金遣いが荒い?多分こんなところでしょうか。結局言いたいことは花子さんのマイナスイメージだけなわけです。花子さんが実際に可愛かろうがそうでなかろうがどうでもいいんです。逆説マーカーは前後で+−が反転することさえわかっていれば、前の部分は読み飛ばしちゃって言いわけです。そう、後ろの部分だけが大事なところなんです。仮に前の部分が長ったらしくて難しい文章だった場合、そこの解読にかける時間って世界で1番無駄なんですよ。前の部分は+か−かだけわかったらそれだけメモしてささっと読み飛ばしましょう。 こんな感じで時間短縮する術はたくさんあります。今後は問題解きまくりながら本当に必要な箇所だけ読む癖をつけていこうね。 世界史 手元に赤本、資料集、教科書の三種の神器を用意。別で新しいノート一冊。まず赤本を時間測りながら解いていき終わったら解説読みながら周辺知識含めて徹底的にリサーチ。因みに解きながらにあやふやだったものには全て一つ残らず印をつけておいて、仮に正解していても間違えたものと同じ様に徹底的に洗おう。ノートを用意してもらう理由は、そこで得た知識を片っ端からメモしてもらうためだ。でも適当な書き連ねるのでは意味がない。そのノートは本番当日まで君のバイブルになる。インド史ならインド史のページ、中国史なら中国史のページなど、時系列とか見栄えとかはどうでもいいからとりあえずまとまった時代は近くにまとめておこう。それぞれ簡単な年表を作るのをオススメする。例えばドイツのページを作ったら年号とともに重要なイベントを上から順に書いていく。たくさん過去問を解いて復習していくうちに、どんどんその年表に知識が書き加えられて内容が充実していく。すると、「あ、ドイツで〇〇が起こっていた時イギリスでは△△が起こっていたんだ!イギリスはやっぱり成長が早かったんだな~」とか「中国で〇〇帝が即位した時ヨーロッパ世界はまだ△△戦争してたのか〜。昔はアジアの方が発展してたんだな。」とか新しい知の発見がどんどん生まれて、それが他の知の発見へ連鎖的につながる様になります。これが楽しくなってきた頃にはどんどん点数が伸びていきますね。ただ、注意点としてはノート作りに傾倒しないこと。あくまであなたの補助になる教材を作っているわけですから新しく「教科書」を作る必要はありません。コツとしては初めから細かいことは書かずに初めは自分が知ってることだけ超大ざっぱなことだけ。そこから問題を解くうちに内容が充実していくイメージを持つことです。ワークでも過去問でもこれからは一問たりとも無駄にすることのない様に! 長くなっちゃってすみません。でも上記のことをしっかりやっていただければ確実に点数は伸びていくと思います。実はこれでもまだまだ書き足りないので何か疑問点等あればいつでも質問してください!
北海道大学法学部 とも
114
14
本番試験
本番試験カテゴリの画像
数学の勉強をしても、できるようになってる気がしない時は
はやとさん、はじめまして! なかなか数学って身についてる実感を得にくいですよね。それでも、しっかりと毎日決めてチャートをやっていれば、力はついていくと思います! 今はやとさんが何周目かによって方法も違ってくるかと思いますが、 もし1周目なら、問題を見て分からなかったらすぐに答えを見てもいいので、解法を丸覚えするつもりで進めるのがオススメです! チャートは色々な分野のベースとなる問題が載っているので、それらの問題の解き方は基本的に覚えておかないといけないものです。模試や二次試験はこのベースの解法を覚えている上で、問題に合わせて覚えている解法を応用しながら解いていくという感じです。 2周目は答えを見ずに自力で解き、分からなかったところにマークをつけておいて、もし余裕があれば3周目にマークの箇所を解きます。 1周目で問題に対する解法をしっかり覚えられると、模試などでも成績がかなり上がると思います! 今までは問題を見てもどう解くのか方針が立てられなかったりしたところも、何となく記憶にある解法から方針を作っていくことができます。 進めるペースに関しては、終わらせたい時期と終わらせる問題数を考慮して、問題数を日数で割って、1日の問題数を算出するといいかなと思います! 今からの理想にはなりますが、1周目は夏休み中に終わっているといいかなと思います。 長くなってしまいましたが、参考になれば幸いです☺️ 質問などがあれば、気軽にコメント欄で聞いてください!
京都大学工学部 さかさか
13
4
理系数学
理系数学カテゴリの画像