UniLink WebToAppバナー画像

ベクトルの慣れなのか

クリップ(0) コメント(0)
5/28 15:46
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

さかな

高3 愛知県 東京大学文学部(68)志望

ベクトルに関しての質問失礼します ベクトルを解いてて1対1の演習問題の方まで一通りやってほぼできる感じです ですがプラチカやスタエンを解いても時折解けない問題があり解説を見れば、あっそれでやるのか、と言った具合で即理解はできます。 ですがその時折解けないのがストレスになってしまいます、やはりベクトルはもっと演習を積んで慣れるべきでしょうか

回答

ちょま

京都大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
ほとんどのベクトルの問題において閃きがいらない一方解き方に何通りもあるのがお悩みの原因だと思います。 これを解決するには慣れて解くパターンにどんなのがあるかを覚えるしかないと思います。どの点を起点にするのか、成分で計算するのかベクトルのままで計算するのか、図形的解釈で解くのかなどなどベクトルには様々な解き方があるのが難しいところであり便利なところでもあります。慣れてくると大体これかなというのが見えてきますよ。 今は我慢して自分の中で解法パターンを作成し1個ずつ当てはめながら演習していくのも有効だと思います。

ちょま

京都大学工学部

1
ファン
1.1
平均クリップ
4
平均評価
メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

やり直しの仕方
数学の問題をやり直す上で、解答や式変形を一字一句覚えるなんていうことがな必要ないことは言うまでもないことだとおもいます。 なぜなら、数値、条件が全く同じ問題なんて人生でそう出会わないからです。 では、どうするのか?ということですが、僕が意識していた点はその問題の核となる部分を抽出し抽象化、一般化することです。 要は1から10を得てほしいと言えばいいのでしょうか? 具体的に説明すると、立体図形の問題で、ベクトルで解こうとしたけど、なかなか上手くいかなかった。 解答にはベクトルによる解法が書かれておりその解法がなかなかテクニカルで簡潔である。 しかし別解に座標を置いて計算でごり押しする解き方も書いてある。こちらの方法はなかなか、計算量が多そうだ。 こういうことがあったとします。 こういう時に、じゃあテクニカルな式変形を覚えようとしていてはなかなか数学力はつきません。 この問題の復習はいくつかやり方が考えられますが、この問題の核を抽出し一般化とは、以下のようなことです。 1.確かにベクトルのやり方もいい。なので、頭に留めておこう。 2.座標を置くやり方は計算量が多い一方、やっていることは素直である。なので、本当に思いつかなかったら、最終的に座標を置けばいいのではないか? 3.角度といった条件は出来るだけベクトルで扱うのが良さそうだ。 4.交線などは、座標を置き平面の方程式を立てて求めていくのが良さそうだ。 などなど得られることはたくさんあるはずです。 これはあくまで一例ですが、1つの問題から学べることは案外多いものです。 無作為に問題数をこなすのではなく密度の濃い演習をこなすことをお勧めします! あくまで僕個人の意見ですので、何か参考になれば幸いです。
東京大学理科一類 ゆかい
22
1
理系数学
理系数学カテゴリの画像
一橋数学
ある程度の数学の基礎は身についていると思うのでその先の勉強方法について話したいと思います。 数学の難しい問題というのは解き方の展望が見えてこないものが多くあります。なので、正確に文章を読んで、文章の中からヒントを拾ったり、式の形をみて、使えそうな公式や、定石となる解き方を考えてみることが必要になります。おそらくランボさんはこのようにして、いくつか選択肢に上がった解法の中に正解となる解法があったのにそれが使えなかった、ということだと思います。しかし解き方を思いついてから最終的な解答方針まで見えてくることはほとんどないと思います。難しい問題はイメージとしては壁が2〜3段階あるという感じです。最初の足がかりとなる解き方をして出てきた式が解けない。そして再び考える。それに対して解き方を考えまたやる。問題を解く時はこれの繰り返しになってきます。 難しめの問題のイメージを話したので、次は勉強方法について書いていきたいと思います。数学は多くの問題集に手を出すより、一冊完璧に、とよく言いますが、その通りだと思います。なぜなら、結局一冊の中に大方必要になってくる解法は全て入っているからです。そして例えばプラチカであればその単元ごとにまとめて学習していくことをお勧めします。その時に確率であれば、P型、C型、漸化式型、円や数珠順列、条件付き確率、じゃんけんや、勝敗を決めるパターン、etcがあると思うので、そのパターンを「漏れなく、だぶりなく」身に付けるとともに、どのパターンの問題はどうゆうような問題文になっているのかを自分なりに考察することが大切です。例えば、簡単な例ですが、組み合わせの時に同じようなものを区別するかしないかで解き方が変わると思います。このように問題文や式を観察して、どのときにどのパターンを使うことが多いか分類すると良いでしょう。このとき、「漏れ」がないことで、どれかのパターンに帰着し、「だぶり」がないことで、実は同じ解法なのに出題形式が違うから両方覚えてしまって、どっち使うか迷うような手間が省けます。そこを意識して勉強するのがいいと思います。 最後に過去問についてですが、過去問はあくまで出題形式、傾向や、時間などを確認して実践するものだと思っています。なので直近6年のものは残しておくべきでしょう。またマスターって言葉の定義は曖昧です。マスターが過去問の解き方を覚えるだけであるなら無駄だと思います。問題を見て、なんでこの解法をしたのか考え、そして始めてその問題を見たと仮定したとき、その問題文からどんなキーワードを拾ったら、自分がその解法にたどり着くかというところまで考え、身に付けることができて、始めてマスターしたと言えます。それなら過去問のマスターはかなり有用だと思います。数学は初見で考え、解いて、解答をみて、終わる人が多く、初見で考えることが重要だと思われがちですが、それを可能にするには解答をみた後の上記の考察がもっとも重要になると思います。 試験本番までまだあと4ヶ月あります。十分に身に付けるだけの時間はあると思うので最後まで頑張ってください。応援しています。
京都大学経済学部 フランダー
30
2
文系数学
文系数学カテゴリの画像
難しい参考書の勉強の仕方
青チャート・フォーカスゴールド・1対1などのいわゆる「網羅系」の参考書は終わらせましたか? プラチカは難易度的にこれらの参考書の一つ上のイメージです。 基本的に、受験数学において難問と呼ばれる問題は、いわゆる「網羅系」参考書に載っている例題問題のポイントを複数組み合わせたり、発展させて作られていることが多いです。 基本的に復習において重要なのは、次に「似た」問題がきても解けるようにするということです。 他の科目でもそうですが、全く同じ問題はなかなか出ません。でも、「似た」問題はよく出ます。 では、「似た」とは何なのか?それは、鍵となるポイントが同じということです。 よって、復習においてはその問題のポイントが何なのかを、抽象化して把握し、次にそのポイントに出会ったときに対処できるような、ある程度一般化された手法を自分の中に確立することです。 (ある程度というのは、完璧に一般化するのは難しい場合も多いからです。実際は、明確に一般化した手法を覚えていなくても、ポイントに気づきさえすれば解けることが多いです。) そのため、一度その問題のポイントを把握できたら(「この問題のポイントは〜を調べれば〜がわかるっていうことと、〜が周期的ってことなんだよね」って軽く説明できるイメージ)、2回目以降の復習では、実際に計算したりしなくても、ポイントを拾いながら解答の流れを頭の中で組み立てるだけでも良いです。計算の練習ができず、少し大雑把になりがちですが、大幅に効率を上げれます。 少し回り道になりましたが、質問に対する答えとしては、「その問題の核となるポイントを押さえれていればなんでも良い」です。 自分の場合はモチベ的に2周目を回すのは気が進まなかったので、問題を解いた後、解説を見てポイントを把握したら、復習すべきと思うポイントを問題文の横に短く書いていき、復習の際は問題文とそのポイントを読んで、「ハイハイこういう問題でこういう解き方ね、ハイハイ」って感じで眺めてました。 色々書きましたが、この辺のことは「受験の叡智」という本に、もっと詳しく、説得力のある形で書かれているので、ぜひ読んでみてください!
東京大学文科二類 にゃん
14
4
文系数学
文系数学カテゴリの画像
難問との向き合い方
その感じよくわかります。 私の経験からお伝えするならば、あなたがお考えのようにたくさん問題を解くことと、さらに付け足すならば、制限時間を決めて難問と向き合うことが打開のカギになります。 1つ目のたくさん問題を解くことには大きく3つの目的があります。 ①典型問題の典型的な解法を身につけること。 ②問題の捉え方の視野を広げること。 ③計算ミスや勘違いを防ぐ注意力を高めること。 ①においては、いわゆる標準レベルの問題に相当しまして、問題集などでは例題として取り上げられていることが多いです。この手の問題は考え方を理解した上で動きをパターン化させてしまうのもアリだと思います。 ②については発想力です。よく問題を解いていて「こういう風に考えれば良かったのか」とか「着目する場所が違った」と思った経験はございませんか?いわゆるこの発想力を高めるには演習の経験値を積んで、問題の見方や捉え方を知っていくしかないと思います。 ③はおそらく最後まで悩むものです。このようなミスで本番減点されないためにも演習量は確保しなければなりません。 無意識的にこの目的が達成されますので、ひたすら問題を解く効果は実感しにくいですが、大変重要なものです。 2つ目のきちんと難問と向き合うことについては、上述した②に近いものがあります。つまり、難問は一見問題文を読んだだけでは解法が見えてきません。 それを打破するには、とにかく問題文から分かることを書き出してみる、その書き出されたものから他に分かること、ヒントはないかと悩み、少しずつ紡いでいくことで解法が見えてくることが多いです。 長い時間粘っていても効率が悪いですので、きちんと時間を決めて、その間はひたすらあれこれ考えて解法の糸口を見つける経験を日頃から積んでいると、自力で解ける問題が増えてくると思います! おそらく入試本番でも悩むような難問は出てきます。 そこで自力で解法を見出せるかどうかは、やはりたくさん問題を解く経験値と日頃から難問と向き合ってきたかの2つがキーになると思います!
東北大学教育学部 まー
11
1
文系数学
文系数学カテゴリの画像
三元一次方程式 計算ミスを減らすには
こんにちは! たしかに三元一次は煩雑になってミスりがちですね笑 自分もベクトルの大きさの計算なんかはかなり苦手でした。 以下、計算ミスを防ぐために(特に共通テストで)気をつけるポイントをお伝えします! ①ベクトルの成分は縦に書く もしかしたら既にやっているかもしれませんが、ベクトルの成分は縦に並べて書きましょう。現行の教科書などは成分が横『(2,4,3)のような形』で書かれていることが多いですが、これだとミスりやすいです。   2 { 4 }   1 のように縦で成分表示すると文字が入って式が複雑になっても見やすいので、成分同士の方程式や内積の計算をするときのミスがかなり減ります。 (OP→)=x(a→) +y(b→) + z(c→) のような場合も、       a (OP→)={ b }       c のように表しちゃうと計算でミスりづらいです! ②大きな余白や白紙のページを利用する 共通テスト本番ではめちゃくちゃ煩雑なベクトルの計算が出ることは正直あまりないです。しかし、東進などの予備校が手掛けている模試や問題集の中には、計算ゲーのような悪問も含まれているのが現状です。ですので正直に言えば、そういった模試などの悪問でケアレスミスをしてしまっても一喜一憂することは無いと思います。 しかし、工夫をするとすればやはり余白の使い方でしょう。「あ、この計算重いわ」と感じたら、無理して小さい余白や暗算に頼らず、どっしりと構えて大きな余白を探しましょう。その分タイムロスに感じるかもしれませんが、いくらわさんのように京大を目指すレベルであれば、タイムロスよりも安易な判断による失点の方が痛いことは明確だと思います。心に余裕を持って頑張ってください! ③後回しにする 共通テストの数学は、ひらめきゲー/誘導ゲーな要素があります。自分のやり方でやったら死ぬほど難しい式がでてきたけど,誘導にうまく乗っかって解き直したらめちゃくちゃ簡単だった、なんてケースがかなり多いです。また、わからないからとりあえず飛ばして最後に戻ってきたら、頭がクリアになって簡単に解けたというケースも多いです。 問題が変に難しいなと感じた時は、割り切ってスキップして、最後に戻ってくるようにしましょう。仮に計算ミスをしていたとしても、後で見直すと間違いに気づきやすいです。共通テストはとにかく時間と勝負なので、沼りはじめたら終わります。とりあえずスキップしてみることは案外大切な心構えですよ! ①〜③までご紹介しましたが、特に大事なのは③です。 これは共通テストの数学では本当に大切な考え方です!一緒に受験勉強していた東大生の友人たちでさえ、計算が煩雑になったり沼ったりすることがありましたし、そういう時はとりあえず飛ばして最後に戻ってくるのがいいと話していました。 ぜひ参考にしてください! また、これから過去問などで形式に慣れていけば、だんだん計算ミスは減ってくると思いますよ〜!頑張ってください!
慶應義塾大学経済学部 choco
1
1
文系数学
文系数学カテゴリの画像
問題に向き合えない
初めまして。 間違えると萎えてしまいますよね。すごく分かります。大学受験で解く問題はある意味で「敵」ですから、間違えることは「負けた」とも取れます。そんな負けた相手のことなんて知りたくないと思うのも当然です。 しかしながら、復習して解けるようになる必要があることは理解していらっしゃいますよね。正直、これからの時期では、1度見た問題は次いつ見ても解けるようにする必要があります。 例えば数学で、整式を割った余りの問題があると思います。商をQ(x)とかで置いたりするやつ。あの問題は大体の大学で頻出では無いですが、でないわけではありません。頻出ではないということは、参考書や予備校の授業では一度扱ったきり出会わない可能性があります。そして、次に出会うのが入試本番かもしれない。 従って、1度見た問題は確実に解ける必要があるのです。 正直、嫌になってしまうのはどうしようもないと思います。私含め周りにも解説読むのが億劫だとか、嫌だという人は多くいましたが、皆そのうえでやっていました。 結局、嫌だと思う気持ち以上にその問題にはもう負けないという気持ちやその1問が入試で出るかもしれないという意識があれば打ち勝って解説も読めるようになります。これは気持ちの問題なのです。 また、理解出来てるのか否か、分からないというお話でしたが、復習の考え方を変えてみるといいかもしれません。私としては、「解説を読んで、もう1回解く」ことが1つの復讐だと思っています。 よくありがちなのが、青チャートとかの問題集で、問題はとかないで方針だけ考えて、解答見てあってたから次行く、みたいな取り組み方です。これは本当に良くないです。なぜなら、読んで理解することと実際に解けることは全然違うからです。 例えば数3の微分の問題では問題の方針自体は簡単でも、微分自体が複雑でミスしてしまうということはよくあります。数学というのは方針を立てるだけでなく、計算も必要なのです。 話を戻しますが、数学であれば、解説を読んで、記述の1行1行の意味を理解出来ているのであれば「理解している」になると思います。例えばxを正の無限大に近づけることが前提の問題。いきなり回答に「x>0より」とあったら戸惑ってしまうかもしれません。ですがこの1行の背景は「xを正の無限大に近づけるから、x>0としていいんだ」と考える。これが「理解している」ということです。つまり、一つ一つの操作の説明が出来れば良いですね👍 上に述べたようなことを意識して解説を読むと、どこが分からないのかが分かります。即ち、「この行は説明ができない」「この操作の意義が分からない」のであれば、それは「分からない」ということです。これで質問に行けますね🙆‍♀️ あとは解き直して、実際に「解けるか」を確かめましょう。別にそこで間違えてもいいです。悪いことじゃないですよ。ただし、最初解いたときと同じミスはないように。もっと進んだところでミスをしたのであればそれは「成長」ですよ。 例を書きやすかったので数学中心にお話しましたが、化学も同様です。化学は数学より解説が雑なことが多いので、より慎重にやりましょう。 一通り答えましたが、いかがでしょうか?他にも質問があれば言ってくださいね。 夏休み大変だと思いますが、頑張ってください!合格をお祈りしています。
北海道大学総合教育部 ちる
3
1
モチベーション
モチベーションカテゴリの画像
別解のやり方
こんにちは! 結論ですが、問題集に掲載されている別解は全て吸収した方がいいです!なので手を動かすまたは、方針を頭の中で考えることをしましょう! 以下にその理由を記していきます。 理由 別解を多く知っていると本番で正解できる可能性が高くなるからです。 ある問題に対して、解方①と②があるときに、解き方によって、計算量や考える量が変わって来てますが、問題によって①、②のどちらがの方が早く正確にできるかは違うので、両対応することでもし解方①で沼っても、②で解くことでその問題を正解できる可能性が高くなります。 慶應経済では特になのですが、数学は時間が足りないのに高い正答率を求められるので、沼ったらすぐに解方を変えて正解することは足切り突破と合格にとても重要です。 頑張って下さい! 応援しています!! この解答がいいなぁと思ったらファンになって頂けると幸いです。高評価もよろしくお願いします!
京都大学医学部 あきら
2
2
文系数学
文系数学カテゴリの画像
初見の問題が解けない
初見の問題が解けるようになるための 数学の参考書と勉強法について紹介します! まず、初見の問題について これを2つに分類します。 ① 基本問題だが自分にとっては初見の問題 ② 応用問題で多くの人にとって初見の問題 まず、①について 基本問題の演習を繰り返し、 基礎固めをしてください。 具体的な方法は下に書いておきます! 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、①の基本問題に関する『オススメ教材』ですが 全範囲を満遍なくカバーし、 数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 問題を解くときの考え方まで紹介しているので、 基礎固めはこの教材を何周もすれば十分です! 基礎問題がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 加えて、青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! 次に②の応用問題を解く力を身につける 演習用のオススメ教材としては以下の教材がオススメです! ・1対1対応の数学 ・プラチカ ・やさしい理系数学 最後にに『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください! やり方を忘れた時に見返してくれたら幸いです。
慶應義塾大学理工学部 チェンパン
64
4
文系数学
文系数学カテゴリの画像
どうすればいいのか分からない
まず、この時点でチャートの例題が解けるようになっているのは素晴らしいと思います👍 基礎力は着実についてきていると思うので全く悲観しなくて良いです。 どういう所で点を落としているのかわからないですが、どの分野も青チャートの例題はほぼ解ける状態だとすると、その先の訓練が少し足りていないのかなと思います。 具体的には「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけることです。 (ここでいう基礎知識というのは、青チャートの例題1つ1つが扱っているポイントのことです。) 入試問題は 🔆「青チャート例題レベルの基礎問題」 🔆「少しひねってあるが、青チャート例題レベルの基礎知識を組み合わせたり、発展させたりすれば解き切れる標準問題」 🔆「基礎知識だけでは解きにくく、最後に回すべき難問」 の3つに大別されます。 入試本番は全5問がどの種類なのかを見極め、解く順番を決めた上で、上記の基礎問題と標準問題を解けるところまで解き切る必要があります。 基礎問題はほとんどの受験者が解ききれ、標準問題はそれ以前の勉強によって差がつき、難問は極めて少数の人間しか試験時間内に解けないため、標準問題をどれだけ解けるかが勝負となります。 では先述の、「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけるには何をすれば良いのか? その答えが過去問演習になります。 普通の参考書ではダメなのかと思うかもしれませんが、一般的に難しいとされている参考書は、ここでいう標準問題だけを集めたものが多いです。 なので、こういった参考書だけでは実際に入試で出る基礎問題や難問の手触りが学べません。 また、過去問と同じ問題は出ないと思われるかもしませんが、ポイントとなる部分が同じ、つまり傾向に沿った「似た」問題はよく出るので、過去問演習はとても効果的な志望校対策といえます。 早めに過去問演習を始めた方が、より早く自分の弱点に気づくことになり、余裕を持って対策を立てられるので、今から取り組み出して良いかと思います。 具体的な進め方ですが、はじめのうちは、得意な分野からでも、近い年度からセットで解いていっても、好きなように進めればいいと思います。(直前期の演習用に、最近の2、3年度分は残しておくことをお勧めします。) 時間制限も秋ごろまではかけなくていいと思います。 とにかく、 🔆その問題がどの種類の問題なのかを考える (多くの過去問集には難易度指標がついているのでそれを参考にしてください。鉄緑のものが詳しくて良いと思います。) 🔆標準問題を通して基礎知識の応用方法を吸収していく (重要なポイントをまとめているのはとてもいいと思います!自分も大事だと思ったところをルーズリーフに書き溜めていき、試験前にはファイリングしたものに目を通していました。) 🔆基礎問題や標準問題が解けなかった場合、どうして解けなかったのかを考え、次に同じようなところで詰まらないようにするにはどうすればいいか考える 🔆基礎知識の抜けに気付いた場合は、適宜チャートを見返したりして復習する といったことを意識して進めてください。 注意点としては難問の復習に時間をかけすぎないことです。必要最低限の知識だけ吸収してとばしましょう。 色々と書きましたが、この辺りのことは「受験の叡智」という本に、より詳しく、説得力のある形で書かれているのでぜひ読んでみてください!
東京大学文科二類 にゃん
7
7
文系数学
文系数学カテゴリの画像
初見で解けるようになるには
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
九州大学経済学部 riku
13
5
過去問
過去問カテゴリの画像