UniLink WebToAppバナー画像

証明問題の扱い方

クリップ(2) コメント(1)
8/7 23:15
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

💎

高3 東京都 芝浦工業大学システム理工学部(53)志望

夏に基礎固めとして青チャートを解いているところなのですが、あらゆる証明問題(図形、整数などなど)が全く解けません。 どうすれば効率よく短時間でできるようになりますか? あとそもそも入試に頻出されますか? 教えていただきたいです。 志望校は東京理科大学、芝浦工業大学、を考えています。

回答

回答者のプロフィール画像

コウ

慶應義塾大学理工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
確かに正面問題は難しいですよね。でも、大方ジャンルごとに区分できます。 まず、演繹法と帰納法で考えましょう。演繹法は、もともと与えられている情報から、公式や条件を利用して式を変形、立式して解く方法です。帰納法は、ある変数indexについていつでも成り立つことを考える方法です。これを意識することから始めましょう。だいたい所感としては、前者の演繹法での証明問題が多い気がします。また証明問題は普通に大学入試で出ます。出し方としては、小問で問題内容のある部分を示させたのち、その特性を利用した求値問題へと導く出題形式が王道です。だから、最初がわからないと手の出しようがなく雪崩のように点を落としてしまう可能性がぬぐえません。そのため、証明問題に強くなることは必須です。 ここからは、証明問題の対策の仕方について記述します。 整数問題の証明について:帰納法を警戒してください。だいたいindexをnとする数学的帰納法に持ち込んで解くケースは非常に多く、シンプルながら忘れやすいためこの発想はいつでも持つようにしてください。それがダメなら、ようやく演繹法です。法則性や条件から、立式、変形していくことで求める式や結果にたどり着きます。ただしこの方法に一貫した解法の仕方はないのでその問題ごとに情報を分析して考える必要があります。ちなみにこの問題が数学でかなり難しい部類に入りやすいのでそこまで気にしなくても受かります。だからまずは、帰納法を検討してください。 図形について:主に考えらるのは、図形的に処理する方法、関数的に導く方法です。どちらも演繹法です。ここにもしindexNが出てきた場合は帰納法を検討して下さい。図形的に処理するのか、関数的に処理するのかは問題よって異なるため一概には言えません。しかし、大体の場合は関数的に解くほうが必ず解ける場合が多いと感じます。しかし、計算が煩雑になることもあるので注意が必要です。逆に一般的な図形に対しての議論をする場合は、ベクトルや図形的に処理するほうが楽にできることが多いです。普遍的な性質を議論する場合、図形の性質、定義を使った定理を出題者側が求めていることが多いからです。 まとめると、まず帰納法を考える。次に演繹法を考えて、一般的な図形ならばベクトルや図形的性質から考える。複雑なある条件下でしかできないような図形ならば、関数からの導入(二次元平面までがおすすめ)で解く方法もありです。 応援してます頑張ってください。
回答者のプロフィール画像

コウ

慶應義塾大学理工学部

2
ファン
88
平均クリップ
4.7
平均評価

プロフィール

現役で慶應義塾大学理工学部を一般受験したものです。東大受験もしましたが、残念ながら不合格になってしまったため、その失敗談も交えながら大学受験を突破するにはどうしたらいいかを真剣に回答します。 科目:数学 物理 化学 英語 国語 地理 前期 東大理科一類 不合格 併願 慶應理工一般 合格   後期 横浜国立大学理工 合格

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

💎
8/7 23:35
ご丁寧にありがとうございます!がんばります!

よく一緒に読まれている人気の回答

解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
64
6
文系数学
文系数学カテゴリの画像
数学の解法を思い付くためには
受験数学の問題は解法がすぐわかるものと分からないものの2択です。それは大体分野によってまちまちですが、僕の場合、整数、確率、複素数平面、以外は解放暗記で押し通しました。 そして、整数、確率はとにかく思考力をつけるために長い間考えるようにしました。なるべく答えをみない。 僕の出した結論 確率は図を書きながら問題把握して、漸化式を立てるか立てないかの2択。漸化式は全て解放暗記ゲーで、立てない場合は、全て数え上げる系か、独立の事象で積の法則の考え系の2択。 整数は、マスターオブ整数をやって、背景を何となく知りながら、問題を解く際には具体値でとにかく実験。50個くらい書き出してみる面倒さにも打ち勝つこと! 複素数平面は、実数に逃げる、極形式、図形処理する、複素のままいくの4通りのどれか。 その他の分野の個別問題で解放が思いつかない場合は、優秀な友達もしくは先生に思考プロセスを聞いてみると良いですよ。
東北大学経済学部 タタ72
16
2
理系数学
理系数学カテゴリの画像
京大2次試験
はじめまして!よろしくお願いします^_^  京大の問題は誘導が少なくて私も苦労しました😥私はある時に勉強の仕方、考え方を変えたところ上手くいったので、それをお伝えできればと思います。  ああさんは模試の判定もしっかり取れていて、過去問に取り組まれているということなので、青チャートなどのレベルの問題はできているという前提でお話させていただきます。    青チャートなどの問題はいわゆる基本問題と言われる問題で、難しい問題を解く上での軸になる考え方や解法を抽出して扱っている問題です。ですので、難しい問題と言われるものは、この基本問題の組み合わせで解くことができたり、基本問題の考え方をどこで使うのか分かりにくかったりという構造をしています。ですので、ここからは1つ1つ学んだ基本問題を並列的に深く運用し、応用問題へ繋げていく作業が必要になります。私の感覚としては応用問題という料理があって、それを準備しておいた基本問題という具材や調味料を、どのように組み合わせることで美味しく作れる(問題が解ける)か試していくといったところです(笑)。  そこで、まず意識して欲しいことは基本問題の1つ1つがどういう問題文や場面に対して有効であるかを押さえておくことです。例えば、整数問題を解く際に、倍数や素数で考えたり、不等式で絞ったりなどなど色々な考え方があるかと思います。なので、それらの考え方、解き方がそれぞれどの場面で有効なのかというのを意識してみましょう。基本問題のエッセンスを押さえる勉強法としては、基本問題には思考のポイントが書いてあると思うので、こういう問題文が出てきたらこういう思考をするんだというのを紐づけておくのがいいと思います。  そして、そこから応用に繋げていく勉強法として1番分かりやすいのは、覚えてきた解法のポイントを意識しながら色々試してみることです。(根性論みたいですいません笑。)最初は基本問題と応用問題の繋がりが分からなくても、自分の手であれでもないこれでもないと試行錯誤することで見えてくるものがあると思います!(例に挙げた整数問題は解法が多岐に渡るのでそれらの中から適切なものを見つけるのは難しいです。しかし、多くの選択肢の中から粘り強く正解を出す姿勢をみたいために、京大は整数問題を毎年のように出題しているのだと私は考えています。)  以上が京大の問題に挑戦していく上での考え方、勉強法になります。抽象的な話が多くなってしまい申し訳ないです🙇もしメッセージいただければ、ああさんの現状を踏まえてさらに細かい内容や詳しい説明などができるかと思います。私のアドバイスでなくても、「世界一わかりやすい京大の文系数学」や「京大数学プレミアム」などの書籍に、京大数学を解くにあたっての考え方が詰まっていますので参考にしてみてください。  京大は本当に楽しいです!入学した後のことを想像して、ぜひ受験勉強頑張って下さい!応援してます📣
東京大学教育学部 たく
4
3
文系数学
文系数学カテゴリの画像
11月の数学勉強方法
今は文系学部に通ってますが、もともとは理系だったので回答させていただきます。 一応、理系の頃から数学は得意でしたので、十分回答になりうると思います。 まず入試の数学が解ける、という段階に至るまで大きく3段階あると考えています。 1つ目が、公式を覚えているということです。これは大前提ですね。 2つ目が、各分野において定石と呼ばれる解き方を網羅しているということです。発展問題ができない、という人は大方この部分ができていないと思います。 3つ目が、問題をみてどの分野の問題か理解し、その場の最適な解法を見つけることができるということです。 上記の3段階ですが、大雑把な説明になっているのでもう少し詳細を説明します。 1つ目はまあ覚えてるとして、問題の2つ目ですね。これはどういうことかというと、例えば、数列を考えてみてください。このときに、数列の解法には等差数列、等比数列、階差数列、群数列、数学的帰納法、また漸化式の解法には一般型、特性方程式、n次式型、指数型、連立3項間、分子分母を逆にする、etcといったような解法があります。これを「漏れなく、だぶりなく」身につけて、覚えることが重要になります。このような解き方はその場で思いつくものではありません。逆にこれを漏れなく使えるようになっておけば、問題から解法へのアプローチだけでなく、解法のパターンを思い出していき、問題に当てはまるものを考えていくといったアプローチを取ることも可能になります。このことから単に問題集の解き方を覚えるだけでなく、その単元ごとの全体像を把握する勉強というのが大事になります。なので11月に数学を勉強するようなら、まず第1に入試頻出(特に名大であれば)の微積、確率漸化式、整数論といった単元を優先的にして、勉強するのが良いと思います。このとき、微積をやるなら微積を一気にやって全体を把握するのようにしましょう。focus goldなら各単元を網羅的にしているのでいい問題集です、ただやる問題は例題だけで十分だと思います。 11月中に3つ目に行くことは相当なペースでやらない限りないかと思いますが、今後の勉強法のためにも書いておきます。 3つ目は発展問題、いわゆる入試問題を見て、どの解法で解くかを身につける練習です。このとき先ほど言ったアプローチを身につけるとともに、わからなかった問題や、なんとなく解けた問題に出くわすこともあると思います。このとき解き方を覚えるだけでなく、その問題文をよく読み、その文章や書いてある数式からどんな解法を使うかを見つけられるようにします。例えば、数列の問題でnは自然数とする。と書いてあるとしましょう。この一言だけで数学的帰納法を使う可能性があがります。もちろん必ず使うわけではありませんが、解答の糸口になるかもしれません。このような勉強が重要になります。また自分がよくやった方法は、一度解いた後にその問題に自分なりの題名をつけ、一言でまとめるということです。そしてその一言を見れば解法が頭の中で浮かび上がってくるような名前をつけましょう。例えば、n=1,2を基にして解く数学的帰納法を用いた背理法の証明問題。と名付けたとしましょう。これだけで背理法で仮定をして、n=k,k 1を使った帰納法であることがわかります。これはあくまで自分の例ですが、こうすることで簡潔に頭の中で整理されます。 上記の勉強方法はあくまで自分の勉強方法なので、万人に当てはまるものではありません、しかし1つの例ではあるので参考にしてもらえれば幸いです。 本番までまだ4ヶ月もあり、十分逆転は可能です。最後まで頑張って第1志望の大学に合格されることを願っています。頑張ってください、応援しています。
京都大学経済学部 フランダー
47
2
理系数学
理系数学カテゴリの画像
ひらめきが足りない
受験数学にひらめきは全く必要ありません。 実際、数学者と数学の得意な高校生が、受験数学で勝負すると高校生が圧勝します(実話です)。一体何が、高校生を勝たせるのだと思いますか? 受験数学には、確かに、「ひらめきのようなもの」を要求する場面があります。特に整数問題などで顕著ですが。しかし、ほとんどの問題は、今まで身につけてきた解法で対応できてしまうんですね。 例えばですが、多変数関数 f(x,y)の最大値、最小値を求めよという問題が出たとします。(f(x,y)の中身は、例えば、x^2 3xy y^2などですね。ここではそれは本質ではないのでスルーします。)その時、方針が何通りかあるんですが、それを列挙できますか? あるいは、図形問題に対して、どのようなアプローチを考えるべきか説明できますか? (答えはどちらも回答の最後に載せますね) もし1つも分からない場合や、何個かしか挙げられない時は、少し補充的な勉強をする必要があります。 問題ごとに、それを解くための最適な方針がありますね。それをメモ程度で十分なので、どんどんまとめていってください。すると、多種多様に見える問題も、スタートは必ず同じことをしていたり、何個かのパターンの方針しか使っていなかったりします。本当はこういうことを分かっていくのは、問題演習を通してだんだん培っていくべきものなんでしょうが、99%の人は出来ないでしょう。僕も全然出来ませんでしたし。 なんにせよ、こういう「解法の整理」をしていくと、全く手が付かない問題はほとんどなくなってきます。途中までは行けるようになるんですね。そして、「ひらめき」は大抵こういう場面で使うものですね。例えば最後の最後に有名不等式を使ったりなどでしょうか。しかし、これすらも、方針としてカテゴライズすることが可能です。いわゆる純粋なひらめきは、受験数学においてはあり得ないといって良いでしょう。大抵、「閃かない」時は、解法が浮かばない時です。かなり具体的な問題に帰着できましたね。 僕は、ノートの見開き1ページに、この問題が来たら、この方針がよく登場する!というフローチャートのようなものを作っていましたね。頭の中が整理されていく感じがして楽しいですよ。 ちなみに、基礎ができていないということは、多少あるにせよ直接的な原因ではなく、いくら固めたところで、成果が微々たるものしか出ないので、気をつけましょう。青チャート、フォーカスゴールド、どちらも持っている時点でフル装備なので、多少の復習はもちろん必要といえども、頑張る必要はありません。 さて、先ほどの問題、わからずじまいは良くないですから簡単に 多変数関数の最大最小問題: ・等式があればxかyに代入してそれを消去する(いわゆる文字消去) ・xかyのどちらかを定数とみなし、ただの1変数関数とみなして考える(いわゆる文字固定) ・有名不等式の利用(相加相乗平均の関係、コーシーシュワルツの不等式、三角不等式など) ・逆像法 ・線型計画法 ・グラフを書いて考える Etc. 図形問題のアプローチ ・まずは初等幾何で解けないか考える。 ・次に、位置ベクトルを導入することで、内積などを利用して解けないか考える。 ・もし対称性の高い図形だったら、座標平面を設定するのも考える。 僕がこの解法整理についての対策を編み出し、始めたのは12月の半ばです。今なら相当早いタイミングから対策できますから、ぜひ過去問での得点をぐんぐん挙げて、自信をつけていってほしいと思います。 では、有意義な秋をお過ごしください!
東京大学理科一類 ひこにー
153
2
文系数学
文系数学カテゴリの画像
例題が解けても演習が解けない
rockyyyと申します。 まず、気をつけていただきたいことが、数学は解法暗記で解けるものではないと言うことです。解法暗記の勉強法であれば、問題が少しでも変わってしまえば、何もわからないと言った状況になってしまいます。それでは数学の点数は伸びません。 ではどうするのかというと、数学を勉強することで学んで欲しいことは、自分が正解を導き出すためのプロセスを学んで欲しいと思っています。「これは解法暗記と同じでは」と思われるかもしれませんが、それは違います。例題の解き方を一言一句違わず覚えたって、違う問題では何をするべきかわからなくなってしまうだけです。プロセスを学ぶとは、正解を導き出すための過程において「これを使えば、これを求める事ができる」「このように式変形することで、このようにまとめる事ができる」と言う知識を増やすと言うことです。僕はよく解法の引き出しを増やすと言う言葉を使っています。数学は別に正解が論理的に求められていれば、解法はなんでもいいと言う学問です。絶対にこの解き方ではないとダメだと言うことはありません。なので、自分で解法の引き出しを増やしておいて、問題を解く際に、色々な手段を取れるようにしておくことが数学を解けるようになる近道ではないかと考えています。数学が得意な人はみんなそうしていると思います。その思考プロセスは 「この定理を使えば解けるんじゃないか」「いやダメだなできない」 「じゃあ、これは?こうすれば解けるんじゃないか」「いや、これが邪魔だからできない」 「あ、一旦この形にすればできるんじゃないか」「こうすると式が簡単になって、解けそうだぞ!」と言うことを頭の中で大体考えてから解答を書き出すものだと思います。 つまり、数学において重要なことは「1つの問題に対して、論理的なアプローチ方法をたくさん持っていること」だと僕は思います。 じゃあ具体的にどんな勉強すればいいんだと思うと思います。それは解法を丸暗記するのではなく、「解答ではなぜこのようなことをしているのか」「これを使うことで、何がいいのか。他の方法ではダメなのか」「自分が解いた方法ではなぜダメなのか」と言うことを考えて、理解する事が重要です。問題を解いて、解答をみる。そして間違っていたら、なぜ間違っているのか、なぜ解答ではこうしているのかと言うことを考えて、その理由がわかった時はそれをノートに書き残しておき、日常的に見返す。この習慣をつけると、日に日に引き出しが増えて、数学が解けるようになってくると思います。僕はそれで数学が得意になりました。 アドバイスとしては以上になります。拙い文章失礼しました。ただ1つだけ知っていて欲しいことが、数学は解法を丸暗記していくだけでは絶対に点数が上がらないと言うことです。なぜこのやり方で解答は解いているのかと言うことを深く考えて、自分のものにしていく必要があります。最初は慣れなくて苦労してしまうかもしれませんが、周りの人や先生に教えてもらいながら継続すると必ず点数は伸びると思います!よかったら参考にしてください!
大阪大学工学部 rockyyy
32
4
理系数学
理系数学カテゴリの画像
数学の勉強法について
 数弱で浪人した者です。私は、質問者様が現在の勉強法を継続される事を断固支持します。確かに時間が余計に掛かる道ですが、それで問題を解くのが少しでも楽になる事を体感されているのは素晴らしいことですし、それが正しい勉強法です。  さて、この勉強法で間に合うかどうかですが、定理公式が出てきた度に取り組めば受験に間にあわないなんてことにはならないでしょう。むしろ焦って暗記に走る方が何倍も危険です。受験直前になってもなおうわべだけで分かったつもりになっているというレベルの知識は、入試本番では使い物になりません。そんな知識だけで受験に挑むのは落ちに行ってるようなものです。数学はそんなに甘くありません。数学は身につけるもの、そして、身につけるには自分の手を動かして理解していく事を繰り返すしかありません。証明を忘れてしまったら何度でも復習して下さい。私もこれを幾度となく繰り返しました。また、有名な定理公式の導出方法=証明を知っているとあっさり解ける、なんて問題も整数分野などではよくあります。  一つお勧めは、問題の解答を見てとっぴな解法だなあと感じることがあれば、それは問題の基礎的な部分が分かってない証拠だと疑ってみることです。例えば数学が全くできない人に問題を解説してあげるとき、自分では当たり前に感じている箇所で、"なんでそうやんの?"と聞かれたことはないですか?普段の問題の解説集も同じで、解法が自分にとってとっぴに見えてしまったら、その問題の要求するレベルに達してないと判断して間違いないです。質問者様の質問には直接関係ないですが、私が受験経験から学んだことですのでお伝えしておきます。  学問では回り道に見えることが結局は王道です。私は予備校でそれを痛感させられました。めんどくさそうで遠ざけていた定理公式の証明を自分の手で行なって初めて習得できた実感をえました。質問者様の強みは今すでにこの遠回りの威力を知っておられるということです。どうか自分を信じこの努力を続けて下さい。健闘を祈ります。
東京大学理科一類 taka5691
37
2
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
235
33
理系数学
理系数学カテゴリの画像
どうすればいいのか分からない
まず、この時点でチャートの例題が解けるようになっているのは素晴らしいと思います👍 基礎力は着実についてきていると思うので全く悲観しなくて良いです。 どういう所で点を落としているのかわからないですが、どの分野も青チャートの例題はほぼ解ける状態だとすると、その先の訓練が少し足りていないのかなと思います。 具体的には「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけることです。 (ここでいう基礎知識というのは、青チャートの例題1つ1つが扱っているポイントのことです。) 入試問題は 🔆「青チャート例題レベルの基礎問題」 🔆「少しひねってあるが、青チャート例題レベルの基礎知識を組み合わせたり、発展させたりすれば解き切れる標準問題」 🔆「基礎知識だけでは解きにくく、最後に回すべき難問」 の3つに大別されます。 入試本番は全5問がどの種類なのかを見極め、解く順番を決めた上で、上記の基礎問題と標準問題を解けるところまで解き切る必要があります。 基礎問題はほとんどの受験者が解ききれ、標準問題はそれ以前の勉強によって差がつき、難問は極めて少数の人間しか試験時間内に解けないため、標準問題をどれだけ解けるかが勝負となります。 では先述の、「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけるには何をすれば良いのか? その答えが過去問演習になります。 普通の参考書ではダメなのかと思うかもしれませんが、一般的に難しいとされている参考書は、ここでいう標準問題だけを集めたものが多いです。 なので、こういった参考書だけでは実際に入試で出る基礎問題や難問の手触りが学べません。 また、過去問と同じ問題は出ないと思われるかもしませんが、ポイントとなる部分が同じ、つまり傾向に沿った「似た」問題はよく出るので、過去問演習はとても効果的な志望校対策といえます。 早めに過去問演習を始めた方が、より早く自分の弱点に気づくことになり、余裕を持って対策を立てられるので、今から取り組み出して良いかと思います。 具体的な進め方ですが、はじめのうちは、得意な分野からでも、近い年度からセットで解いていっても、好きなように進めればいいと思います。(直前期の演習用に、最近の2、3年度分は残しておくことをお勧めします。) 時間制限も秋ごろまではかけなくていいと思います。 とにかく、 🔆その問題がどの種類の問題なのかを考える (多くの過去問集には難易度指標がついているのでそれを参考にしてください。鉄緑のものが詳しくて良いと思います。) 🔆標準問題を通して基礎知識の応用方法を吸収していく (重要なポイントをまとめているのはとてもいいと思います!自分も大事だと思ったところをルーズリーフに書き溜めていき、試験前にはファイリングしたものに目を通していました。) 🔆基礎問題や標準問題が解けなかった場合、どうして解けなかったのかを考え、次に同じようなところで詰まらないようにするにはどうすればいいか考える 🔆基礎知識の抜けに気付いた場合は、適宜チャートを見返したりして復習する といったことを意識して進めてください。 注意点としては難問の復習に時間をかけすぎないことです。必要最低限の知識だけ吸収してとばしましょう。 色々と書きましたが、この辺りのことは「受験の叡智」という本に、より詳しく、説得力のある形で書かれているのでぜひ読んでみてください!
東京大学文科二類 にゃん
7
7
文系数学
文系数学カテゴリの画像
数学の分からない問題の勉強方法
ほさかさんの質問に答える前に、少し遠回りをさせてください!! 私は数学の実力をつけるために ①解法暗記 ②複数の解法を組み合わせる、複数の解法から一つに絞る力をつける(数学的思考力をつける) ことが大切だと考えています。 ①では「すぐ答えを見ること」は正しいですが、②では逆に長考することが推奨されます。 手も足も出ない問題とは方針がまるっきり立たない問題だと推測します。 方針が立たない場合、そもそも解法を知らないパターンと、どの解法が使えるのかわからないパターンがあります。前者は①に、後者は②に対応します。 ① 解法暗記をすべき問題は青チャートの例題が特にそうですし、京大でもそうカテゴライズされるべき問題はあります。(京大理系2022大問3のユークリッドの互除法など) 例えば青チャートを終えたとしても、発展問題の演習の中で出てきた新しい解法を知識として蓄えることは重要なんです。 それと一応説明すると、解法暗記とはある問題のパターンに対してどのような解法が合致するのか覚えるということです。数学の性質を根拠に基づいて解法を覚えるべきことです。(部分的には高度な内容もあるで、初学〜中級者の方はパスしても構わない場合もあると思います) ② 目新しい条件が設定されていたりして、どんな解法が使えるかすらわからない時や、一見典型問題に見えていつも通りな解法が通じない時があります。そのような問題に対処するためにはとにかく時間をかけていろいろ試す他ありません。値を代入したり、より簡単な条件で考えてみるなどの実験から着想を得て既知の解法に帰着することや、別の分野から問題を考えてみる(たとえば、微積の問題だけど、ベクトル、三角関数、図形の性質の分野の解法を使う)ことなど色々試すパターンがあります。どんなパターンがあるかを多くの問題を解く中で経験していくことが重要です。 (=数学的思考力をつける、という意味で私は使います) ここからほさかさんの質問に答えます! ①解法暗記②数学的思考力をつける、の両方の面で多くの問題を解くことが一番大切になります。知識を網羅してさらに定着させるためです。 青チャートなどの網羅系参考書では回転率を上げてまさしく解法を網羅するのが良いと思います。多くの問題を解くことが一番の目標です(理解が二の次でいいということではありません)。この段階では、解法を知らないのだから、わからない問題は答えをすぐにみるべきです。 プラチカなどの演習問題の載っている参考書でも、多くの問題を解くことが目標となります。演習問題を解く理由は二つあり、一つは解法暗記の知識を定着させること、わからない問題に対し試すことのパターンを知ること、またそれを定着させることです。手も足も出ない問題に対処するパターンを知らない段階では手も足も出ない問題の答えはすぐ見るべきです。演習を繰り返すうちにいずれ手と足が出るようになります。そのときからいろいろ試すと解ける可能性が出てくるため、時間をかけて演習する価値が出ます。 ⒈網羅系参考書では答えをすぐに見て良い。 ⒉演習不足の段階では手も足も出ない問題の答えはすぐに見て良い。 ⒊演習して手と足が出てきたら難しい問題も時間をかけると良い。 受験を通して思った個人的な思想なので参考までにしてください!
名古屋大学経済学部 Na
14
7
理系数学
理系数学カテゴリの画像