3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],""] 7:I[231,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],""] 8:I[212,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] f:I[490,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-ec6484a5765a2673.js"],"GoogleAnalytics"] 4:["id","C-l0SGgBTqPwDZPux8JN","d"] 0:["yab-MbJFC1zDbnIJOUFHE",[[["",{"children":["advice",{"children":[["id","C-l0SGgBTqPwDZPux8JN","d"],{"children":["__PAGE__?{\"id\":\"C-l0SGgBTqPwDZPux8JN\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["advice",{"children":[["id","C-l0SGgBTqPwDZPux8JN","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","body",null,{"className":"__className_36bd41","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/85d7fb81f313170a.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"2倍角の公式について | UniLink"}],["$","meta","3",{"name":"description","content":"2倍角の公式(sin2θ=2sinθ・cosθ、cos2θ=2cos2乗θ-1)の、成り立ちを教えてくださる方いませんか!?加法定理から来てるのは知っているんですが、作り方が気になってしょうがないです。誰かお願いします!"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3903,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"ClientInfo"] 14:I[2798,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"AdUnderConsultation"] 15:I[2582,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"AdviserInfo"] 16:I[9083,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"AdviserProfile"] 17:I[7060,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"AdUnderAdvice"] 18:I[3194,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"CommentPostButton"] 1a:I[3866,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-186819a87df201a3.js"],"AdOnAdviceList1"] 19:Tf9c,数学を根本的に理解する。 という勉強方法は、言葉で説明すると少し難しいので、ほんの少しだけここでやっていみたいと思います。 例えば、弧度法の中で「ラジアン」というのが出てくると思います。これは、「2π = 360°」を基準に考えよう。という風に習ったと思います。このラジアンを使って、扇形の弧の長さを求める公式で、「L = rθ」というのがあります。 皆さんの中に、この式を覚えているだけになっていて、意味を理解していない方はおられるでしょうか? これは、小学校の時に習った、「円周の長さは2πr」というものを使っています。 どういうことかと言うと、「円を4分割した形である扇形のこの長さを求めよ。」という問題があった時、 小学校で習った式を使うと、求めるのは円周を4等分した長さなので、 ¼ × 2πr = ½πr ラジアンを使って解くと、中心角 90° は、ラジアンでは ½π なので、L = r × ½π = ½πr よって、答えはどちらの式を使っても、½πr になりました。 中学の知識では、L = 2r × π × 角度 / 360° 高校数学では、L = rθ どちらの公式でも求められますが、公式で見ると、弧度法を使った方が分かりやすいですよね。 という感じです。 公式をただ覚えるだけでなく、意味を理解しながら使えるようになる。ということが、根本的に理解するということになります。 先程の例で言うと、ラジアンというものはどういう意味を持つのか。ラジアンを使えるようになると、計算がどう変わるのか。というのを理解しておく必要があります。 これは、ほかの公式でも当てはまります。 例えば、加法定理の公式: sin(a+b) = sin(a)cos(b) + cos(a)sin(b) これを使って2倍角の公式を作ります。 sin2a = sin(a+a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) 例えば、等差数列の和の公式: S = ½n(a + l) (a:初項、l:末項、n:項数) これに、末項:l = a + (n - 1)d (d:交差) を代入すると、 S = ½n(2a + (n - 1)d) これが教科書に乗っている和の公式の2つになります。 こんなん知ってるよ。という方もいるかもしれません。ただ、これが数学を根本的に理解するということになります。 もう少し難しい話に行くと、 ・解の公式ってなんであの形なの? ・平方完成ってなんでするの? ・円の方程式の意味は? ・微分と積分の関係は? ・ベクトルって何? などなど…… キリがないので、この辺りにしておきますが、 要するに、公式の意味を理解することで、数学を本質的に理解しよう。という訳です。 しかも、これらは全てほとんどの教科書に載っています。理解しようと思うと、教科書を読めば大体のことが分かります。 数学を根本的に理解すると、問題を解くときに答え方がパッと思いつきやすくなると思います。さらに、公式の丸暗記では、時間が経つと忘れてしまうかもしれませんが、理論的に覚えていると、脳の構造的にも忘れにくくなるということもあります。なので、この勉強方法をオススメする方はたくさんいますし、私もこのやり方で勉強しました。 ただ、人によっては向き不向きがありますので、これを絶対に使った方がいいとは私は言えません。 実際に、私もこれで苦手だった数学が、だんだんと解けるようになったので、興味があれば、是非やってみてください。 長文失礼しました。是非参考になればと思います。1b:T12ba,普遍的なことだけを説明しても中々伝わりづらいと思うので、具体的に問題を1問出しながら説明させてください! まず前提として、応用の問題が解けるようになるためには以下のことが必要になります。(結論です) ・基本的な解法がすぐに出てくるようにする ・問題を見た時、前の問題との関連性から考えていく ・誘導に乗っていくのに慣れるのにはとにかく演習量が必要 1つ目は恐らく大丈夫だと思います。また、3つ目もこれから2次試験向けの演習を重ねるうちに「あの時の誘導に似てるなー」というような感覚で段々できるようになってくるものです。つまりは慣れです。自分自身もこれを強く感じています。最初は中々誘導に乗れず辛いかもしれませんが、まずは量をこなしましょう。 おそらく問題は2つ目です。 これは分かりやすく言うと、「こうやってやっていって…あ、(1)(2)ここで使う?」という考え方ではなく、「(1)や(2)の問題の考え方を上手く使えないかな〜」「今までやったことのある基本問題の考え方が何か使えないかな〜、あ、文章のこの部分前にやったあの問題文と似てるな〜」と言ったような、初めから誘導や基本問題などのヒントの方から答えを探っていくように考えていくことです(長くてごめんなさい)。 実際に問題を見て考えていきましょう!以下は2015年の九大の問題です。 以下の問いに答えよ。 (1)nが正の偶数のとき、2^n-1は3の倍数であることを示せ。 (2)pを素数とし、kを0以上の整数とする。2^(p-1)-1=p^kを満たすp,kの組を全て求めよ。 (※^の後は指数を表します。2^n-1は2のn乗-1、2^(p-1)-1は2のp-1乗-1です) (1)は割愛しますが、n=2l(lは自然数)とかと置いて二項定理で分解して3で括ったり、帰納法を使えばいいと思います。とにかく2^n-1が3の倍数だと分かればいいです。 問題は(2)ですね。先程言った通り、誘導を上手く使えないかという点からとにかく問題を見ましょう! まず見るべき点は式の形が左辺と似ている所です。誘導が使えそうですよね。 誘導を上手く使うコツですが、「誘導の部分と問題文の該当部分の違いを上手く見分けること」です。今回であればnがp-1に変わっています。また、(1)でnは"正の偶数"でしたが、p-1は"素数-1"ですよね。 ここの違いは何かあるでしょうか?? まず整数問題で素数が出たら、「2とそれ以外」という見方をするのは演習量をこなせば分かってきます。素数の中でも2だけ偶数で稀有、と認識できていればOKです。(ここは基本問題的な解法暗記の部分) 素数-1は、素数が2のときだけ奇数、素数が2以外のときは偶数になりますよね! ですので、2か2じゃない素数かで分けます。2じゃない素数のときは(1)の条件と一致するので使えそうですよね。まずは使いましょう! ○pが2以外の素数のとき (1)より左辺は3の倍数です。ということは右辺も3の倍数になります。p^k、つまり素数の累乗が3の倍数ということはpは3以外ありえないですよね。ここは素数ならではです。 ですのでp=3から左辺に代入するとk=1と決まります。 ○pが2のとき 代入していくとk=0になりますね。 以上から(p,k)=(3,1),(2,0)となりました! このように、「基本問題の解法はすぐに出ておくようにする」「誘導から常に考えていく(誘導と問題文の違いを認識し、見分けていく)」ことの重要性がわかったと思います。また、基本問題というのは、教科書や青チャートにある典型問題もそうですが、素数は2とそれ以外に分ける、といったような"応用問題でよく出てくるテクニック"もそうです!これは演習量を詰まないと中々インプットされないので、「演習量が大切」なのも再認識できるでしょう。 また、1問に時間をかけて思考していくこともとても大切です!最終的にその標準問題の解き方を覚えられると役には立ちますが、思考力というのは思考する時間を取らないと中々伸びません。1問に10分は考える時間を取りましょう! めちゃくちゃ長くなって申し訳ないですが、参考になれば幸いです!! 1c:Tc1f, こういった問題独自の定義は、だいたい文字を含んでいることが多いです。例えば、 ・「nを正の整数とし、3^nを10で割った余りをanとする。」(東京大2016文系) ・「正の整数nの各位の数の和をS(n)で表す。」(一橋大2018) ・「nを2以上の整数とする。金貨と銀貨を含むn枚の硬貨を同時に投げ、裏が出た金貨は取り去り、取り去った金貨と同じ枚数の銀貨を加えるという試行の繰り返しを考える。初めはn枚すべてが金貨であり、n枚すべてが銀貨になった後も試行を繰り返す。k回目の試行の直後に、n枚の硬貨の中に金貨がj枚だけ残る確率をPk(j)(0≦j≦n)で表す。」(東北大2019文系) のように。あなたが挙げて下さった例でもそうですね。  ご存知のように、数学で文字が使われるのはそこに入る値が不特定であるときなので、逆にいえば、自分で具体的な値を代入して実験してみれば良いわけです。k-連続和でいえば、m=1、k=2とすると、3=1+2という等式になり、3は2-連続和であることになります(相談文のk+1はおそらくkー1の間違いですね。でなければ、nはk+2個の連続する自然数の和になってしまうので)。ちゃんと、n(3)がk(2)個の連続する自然数(1→2)の和であるという定義に則ってますね。2019年文系の確率も、例えばk=1を代入してみると、P1(j)は「n枚の金貨を同時に投げ、そのうちj枚が表で他が裏になる確率」のことを言っているのだとわかります(ちなみにこれは小問⑴)。反復試行の確率を考えればすぐ解けますね。すると、次はk=2、その次はk=3、と実験数をどんどん増やしていけば、Pk(j)の内容もいずれわかるはずです。試行の手順上、残るj枚は必ず全ての試行において表でなければならず、他方それ以外の金貨はすべて、k回のうちのどこかで裏が出ればいい(全て表で残る場合の余事象)わけですから、「n枚の金貨のうち、k回の試行の直後に残るべきj枚はk回とも全て表が出て、それ以外のn−j枚はk回の試行で少なくとも一回裏が出る確率」とわかります。ここまで日本語として簡略化できれば、Pk(j)(特に、k≧2)の値もそこまで苦戦せずに出せそうですね(ちなみにこれは小問⑵)。  このように、なるべく簡単な値から代入して実験を繰り返すことで、独自の定義が何を言っているのかは帰納的に理解できることが多いです。文字が多かったり、分かりにくい表現だったりして、複雑で難しく感じる定義が出てきたら、まずは実験してみることを心がけると良いと思います。文系の問題ですが、もしまだ解いてない場合はネタバレになってしまい申し訳ございません。1d:T14d2,まずベクトルの根本から理解しましょうか。 ベクトルとは 方向と大きさを兼ね備えた量のことを言います。 (1,2)と言われたら 大きさ 方向共にわかりますよね? しかし! 逆に言えば方向と大きさしかわかりません。 宝探しに例えるならば ベクトルは 「南に4歩 西に3歩あるけ」という情報しか持ちません。 つまりはスタート(始点)が決まらなければ 宝の場所(終点)も分からないのです。 そこで出てくるのが位置ベクトルです。 位置ベクトルは始点を(0.0)に固定することで 終点を決めようというベクトルです。 より簡単にいうならば 原点(0,0)からある点(a,b)に行くためのベクトルのことを位置ベクトルと言います。 例えば 位置ベクトル(1,2)と言われたら 原点(0,0)からある点(1,2)にいくためのベクトルですよね? つまり!お分かりだと思いますが 位置ベクトルの数値は座標の数値と同じになります。 なので 座標の計算で成り立つ公式は位置ベクトルでも成立します。 例えば 内分点の公式は内分ベクトルの公式と等しいですよね。 ここで頭がこんがらがりガチなポイントとしてvAB=vOB-vOAがあげられます。【ベクトルABをvectorの頭文字をとってvABと書きました。】 ここで意識しなければならないのは 位置ベクトルは座標のように扱うことができるだけで本質的にはベクトルです。 vAB=vOB-vOA=vOB vAO となり、AからOへ行くベクトルとOからBへ行くベクトルがあるので結果として AからBへ行くことができます。 ついてこれましたか? 次に ベクトルといえば内積(外積)が大事ですね。 これに関してもお話ししましょう。 ここにvAB=(a,b)とvCD=(c,d)があるとしましょう。 内積とはvAB•vCDの計算のことを言います。 具体的にいうならば vAB•vCD=ac bdですね。 そしてvAB•vCD=AB×CD×cos@ (@はABとCDのなす角です)も有名です。 しかしなんのことかさっぱりですよね? 詳しく説明していきます。 /vAB/^2=(vOB-vOA)^2=/vOB/^2 /vOA/^2-2OA•OBここまでは楽勝ですね。 ここで三角形OABを書いてみてください。 これ何かに似ていませんか? そうです余弦定理です。余弦定理は AB^2=OA^2 OB^2-2OA×OB×cos@です。 見比べてみると 2OA×OB×cos@=2OA•OBとなりませんか? これこそが その不可解な等式のメカニズムです。 ∴実は 外積は vAB×vCD=ad-cb=AB×CD×sin@となります。 なので外積÷内積をすることでsin@/cos@=tan@などとすることもできます。わりと便利ですね。 長々とベクトルの話をしてきましたが、センターのベクトル問題で得点を取るための話をします。 ずばり一番重要なのは 内分公式の完ぺきな理解です。 MがABをt:sに内分するとすると vOM=s vOA t vOB /s tが成立することは 内分点の公式から明らかです。 更にvOM=s/s t vOA t/s t vOBと変形でき、係数の和が1になっていることをおさえておきましょう。 では 係数の和が1にならない時(内分 外分が成立していない時) 式に意味を持たせるためにはどうすればいいでしょうか。 具体例をだすと、 vON=2/3 vOA 2/5 vOBのとき、Nはどのような点でしょうか? 繰り返しになりますが、その点Nに意味を持つ意味を知るためには 係数の和が1になることが大切です。 なので例えば vON=3/5(10/9 vOA) 2/5 vOBと変形するとNは OQ=10/9 vOAを満たす点Qと点Bを2:3に内分する点とわかりますよね。 そしてもう一つ 発展させるとこれによって交点を求めることもできます。 例えば 点Tが直線ABと直線CDの交点であるとしましょう。 このときTは線分AB上でかつ線分CD上ですね。 そしてここでポイントなのは 直線AB上にあるということはTは線分ABの内分点であるということ。 線分CDについても同様です。 しかし具体的に何対何かはわからないので、x:(1-x) 、y:(1-y)と仮定して立式してみます。 vOT=x vOA (1-x) vOB......㊀ vOT=y vOC (1-y) vOD......㊁です。 そしてその後の問題の流れとして想定されるのは vOCやvODをvOA vOBを用いて表すことができ、 それを㊁へ代入し、㊀と係数を比べます。 具体的に vOC=vOA vOB vOD=2 vOA-3vOBと仮定して考えてみると、 ㊁式はvOT=y(vOA vOB) (1-y)(2 vOA-3 vOB)=(y 2-2y) vOA (y 3-3y) vOBとなりますね。 ㊀と係数を比較すると (y 2-2y)= x (y 3-3y)=(1-x)となり、x,yが求まり、それによってvOTが特定されます。 などなど 上記のことがしっかり完ぺきに理解できて入れば大体の問題はとけるのではないかなと思われます。 あとは面積公式などもありますが、それらは内積の式を考慮すれば必然的なことだとわかるはずです。 長くなってすいません。 頑張ってください。 ∴誤字があればすいません。 2:["$","main",null,{"className":"px-4 pt-4 pb-4","children":["$","div",null,{"className":"max-w-3xl mx-auto w-full","children":[["$","div",null,{"className":"mb-8","children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/h6xeh63x?advice=C-l0SGgBTqPwDZPux8JN","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"mb-4 rounded"}]}]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"2倍角の公式について"}],["$","div",null,{"className":"flex justify-between mb-4","children":[["$","div",null,{"className":"text-left text-xs text-caption","children":["クリップ(",3,") コメント(",0,")"]}],["$","div",null,{"className":"text-right text-xs text-caption","children":"1/14 3:23"}]]}],["$","div",null,{"className":"coach-mark mb-4","children":"UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。"}],["$","div",null,{"className":"mb-4","children":["$","$L13",null,{"clientImageUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_58DC0613E149407DAD93FFE2FEEEA0E6.jpg?alt=media&token=8df182c9-7550-411f-a3fd-9b7aafbca745","clientUserName":"ネテロ会長","infoString":"高2 鹿児島県 埼玉大学志望","adviceId":"C-l0SGgBTqPwDZPux8JN"}]}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","consultation-part-0",{"children":[null,"2倍角の公式(sin2θ=2sinθ・cosθ、cos2θ=2cos2乗θ-1)の、成り立ちを教えてくださる方いませんか!?加法定理から来てるのは知っているんですが、作り方が気になってしょうがないです。誰かお願いします!"]}]]}],["$","div",null,{"className":"pt-4","children":["$","$L14",null,{}]}],null]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"回答"}],["$","div",null,{"className":"mb-4","children":["$","$L15",null,{"adviserImageUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_2YsOLY3vETrPdlfe.jpg?alt=media&token=4e0af87b-199a-42f0-b425-4a1e1479bd2a","adviserName":"タイ","adviserDepartment":"慶應義塾大学商学部","adviceId":"C-l0SGgBTqPwDZPux8JN"}]}],["$","div",null,{"className":"coach-mark mb-4","children":"すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。"}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap mb-4","children":[["$","div","advice-part-0",{"children":[null,"加法定理から、\nsin(a+b)=sina・cosb+cosa・sinb\nb=aとして、\nsin(a+a)=sina・cosa+cosa・sina\n⇔ sin2a=2sina・cosa\na=θと表せるから、\nsin2θ=2sinθ・cosθ\n\n同様に、\n加法定理から、\ncos(a+b)=cosa・cosb -sina・ sinb\na=bとして\n cos2a=(cosa)^2-(sina)^2\n( 読み方はcos2a= cos二乗θ- sin二乗θ)\na=θと表せるから、\n cos2θ=( cosθ)^2-(sinθ)^2 ←☆とする\n\nまた、一般に(sinθ)^2+(cosθ)^2=1\n(読み方はsin二乗θ+ cos二乗θ=1)\nより、 (sinθ)^2= 1-(cosθ)^2であるから、これを☆に代入して、\n cos2θ=( cosθ)^2-1+ (cosθ)^2\n⇔ cos2θ=2(cosθ)^2-1\n\nまた、同様に、\n cos2θ=1-2(sinθ)^2を導き出せる。"]}]]}],["$","div",null,{"className":"mb-4","children":["$","$L16",null,{"adviserImageUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_2YsOLY3vETrPdlfe.jpg?alt=media&token=4e0af87b-199a-42f0-b425-4a1e1479bd2a","adviserName":"タイ","adviserDepartment":"慶應義塾大学商学部","adviceId":"C-l0SGgBTqPwDZPux8JN","numberOfFan":239,"clipsAvg":19.428571428571427,"adviceRateAvg":4.549019607843137,"profile":"国立文系 一橋志望 \n現役合格 慶應商2年生\n【合格】\n慶應商A方式 早稲田教育 中央法統一試験\n【不合格】\n一橋社会学部 慶應法 経済A方式\n早稲田 商 文化構想 \n↑多すぎですね\n\n得意 歴史\n苦手 国語\n\n中高サッカー部(キャプテン)\n進学校卒です。\n自分の周りの東大京大一橋東工大合格者の話や、私立専願の人も話もできます。"}]}],["$","div",null,{"children":["$","$L7",null,{"href":"https://ck.jp.ap.valuecommerce.com/servlet/referral?sid=3364577&pid=884970531&vc_url=http%3A%2F%2Fshingakunet.com%2F%3Fvos%3Dnrmnvccp0000100","rel":"nofollow","target":"_blank","children":["$","$L8",null,{"src":"/images/document_request_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink パンフレットバナー画像","className":"mt-4 rounded"}]}]}],["$","div",null,{"className":"pt-4","children":["$","$L17",null,{"id":"adsbygoogle-init-under-advice"}]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","h1",null,{"className":"text-xl font-semibold","children":["コメント(",0,")"]}],["$","$L18",null,{"adviceId":"C-l0SGgBTqPwDZPux8JN"}]]}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"text-xs p-4","children":"コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。"}]}],["$","h1",null,{"className":"text-xl font-semibold","children":"よく一緒に読まれている人気の回答"}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"divide-y","children":[["$","div",null,{"children":["$","$L7",null,{"href":"/advice/3zong24BTqPwDZPuh9CM","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"「数学を根本的に理解するとは」"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$19"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["大阪大学基礎工学部"," ","tomato-juice"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":51}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math12.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/XluOkWMBp00JfyF5pONv","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"三角関数の変形の使い分けについて"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"質問者様は高2ということなので、数Ⅱまでの範囲で回答させていただきます。\n\n\n【三角関数を変形する目的】\n\nまず、三角関数を変形するのは必ず目的があります。\n①三角関数を含んだ方程式・不等式を解くため\n②三角関数を含んだ関数の最大値・最小値を求めるため\nなどがよくある目的ですね。\n\n《①について》\n方程式や不等式ははじめに因数分解で攻めます。\n(因数)(因数)=0\nといった形になれば、あとは簡単ですね。\n因数分解しない場合は②の考え方をそのまま借りましょう\n\n《②について》\nsinのみ、cosのみ、tanのみ、の式に帰着させます。そしたら見たことある関数(一次関数、二次関数など)になります。\nそのための手段として\n*三角関数の相互関係\n*加法定理を用いた公式\nなどが存在します。\n\n\n---------\n\n【質問主様の弱点と思われるところ】\n\n数Ⅱの三角関数に入ってからうまくいかなくなった高校生は加法定理を用いた公式につまづいている人が多いです。\n公式自体覚えていても、問題でうまく活用出来ないことがよくあります。\n\n先程の項目で書きました、変形のそもそもの目的を意識して演習してみてください。\n使い分けパターンは青チャートなどのテキストに詳しく記載されています。これを身につけることが大切です。\n\nパターンを繰り返しの演習で身につける際に、\n「因数分解を目指す!」\n「sinのみ、cosのみ、tanのみの式を目指す!」\nという意識を持って取り組むことで、何故その式変形を使うのかが体感出来ます。\n\n\n---------\n\n【最後に】\n\n問題のゴールから逆算して考えることが数学においては大切です。\n初めから逆算して考えることなんて出来ないから、パターンを演習によって身につけるわけですが、ゴールを意識してパターンを身につけなければ、何のためのパターンなのかがわかりません。\n必ず、式変形の目的を意識した演習を心掛けてください。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","クウルス"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":26}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1a","ad-on-advice-list-2",{"id":"ad-on-advice-list-2"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/QVLam4MBTqPwDZPu-u4F","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"標準、発展問題の解き方"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1b"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学経済学部"," ","riku"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":10}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/ShhVSGsBTqPwDZPueSBp","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"公式の意味を理解し、導けるようにすることに時間をかけるべきか"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは。公式の理解と導出についての質問ですね。\n簡単にいうと、理解するべきものと覚えてしまえばよいものがあります。\n\n数学は暗記科目ではないですが、例えば中学校で習った二次方程式の解の公式など、覚えなくては問題が解けないものも多くあります。\nしかし、こういうものはたいてい問題を解き続けていれば自然と覚えてしまうものなので、わざわざ暗記しようと気負う必要はありません。その分問題を解いて欲しいです。\n\n導出すべきものとしては、例えば半角の公式や3倍角の公式です。2倍角は自然と覚えると思いますが、上記2つの公式は使用頻度が低いため覚えるよりは毎回導出す?のをオススメします。\n導出の手順は教科書や参考書に載っています。見ながらノートに書くでも良いので一度は導出の流れを掴んで欲しいです。\nちなみに、難しいですが導出を頭の中だけでするのは計算練習や頭の体操とても良いのでオススメです。\n\n導出すべきものとそうでないものの見分け方としては、教科書や参考書に導出方法が載っていなくて、かつ使用頻度が高いものは導出せず、覚えてしまう。そよ逆のものは導出過程を一度は経験しておくという形で良いと思います。\n\n以上です。参考になれば幸いです。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学水産学部"," ","しみしみ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":11}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/t67JjPn7VPePttQX6aP7","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"証明や導出がすごい気になってしまう"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"三味線さん、はじめまして。\n\nお気持ちはすごく分かります。\nたしかに解答の細かいところに疑問を持ったり、その都度公式を導出していると参考書の進むペースは遅くなってしまいますが、その分、質は高くなると思うので全然良いことだと思いますし、むしろそうするべきだと思います。\n\nよく言われる「数学は理解」という言葉は、なぜその公式を使ったのか、なぜその解法で解くのか、なぜその変換を行うのか、もっと細かいことで言うと、なぜその順に解答を記述するのかといったことを理解することです。\n\n「数学は暗記」という言葉もたまに聞きますが、これは単純に英単語みたいに暗記すると言うことではなくて、どうしてこの解法を使うのかを理解した上でどうゆう問題が出たらどの解法を使うのかを暗記すると言うことです。\n仮に理解の過程を飛ばして暗記だけすると、少し問題の形が変わっただけで解法が思い浮かばないということになってしまいます。\n\nそして理解を深めるためには、三味線さんのように細かいところにも疑問を持って問題を解くのが一番の近道です。公式は導出ができる方が理解度ははるかに上がりますし、たまにある公式の導出に基づいた問題なんかも出題されることもあります。\nまた質問文中のことで触れると、なぜ置換積分はこうゆう形でするのか、一次独立とは何か、解答に使われている言葉の意図、こういったことに疑問をもって考えるのはとても良いことだと思います。確認しても忘れてしまうのは人間なので仕方ないことで、確認してその時に理解したことをノートなんかに纏めておきましょう。次に同じような疑問が出た時にノートを見返すことで少しずつ定着して力になっていくはずです。\n私の場合だと2.3回では定着せず、5回とか10回その都度見返すことで定着し始めた感じだったので、忘れているから力になっていないと焦らずに、自分のペースで頑張ってください!\n\n応援しています☺️\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","さかさか"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":5}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math4.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1a","ad-on-advice-list-5",{"id":"ad-on-advice-list-5"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/cFJnJoIBTqPwDZPuubCm","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"独自の定義、規則"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1c"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学法学部"," ","たけなわ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math4.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/bU4qMXkBTqPwDZPuncb2","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"隣接3項間漸化式"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは、名古屋大学医学部医学科のメイメイといいます。\n(an-an-1)=bnとするとb1は求められないですね。\n\n(an+1)-(an)=2[(an)-(an-1)]\nが出てきているはずですが、\n\nn-1の項があり基本的にn≧2で考えています。\nこれをn≧1に直してみると\n(an+2)-(an+1)=2[(an+1)-(an)]\nとなります。\n単純にnの部分を1ずつずらしただけです。\n\nこの状態で(an+1)-(an)=bn\nと置いてみましょう。\n\nb1が求められるはずです。(ちなみにb2は必要ないです。)\n\nつまり(bn+1)=2(bn)、b1=(a2)-(a1)=8の等比数列に帰着しますね。\n\nこれを解くと、bn=8・2^n-1=2^n+2となります。(2^n-1は2のn-1乗という意味です。)\n\nすなわち、(an+1)-(an)=2^n+2\n\n両辺を2^n+1で割ると\n\n<(an+1)/2^n+1>-(1/2)<(an)/2^n>=2\n\nとなります。\n\n(an)/2^nをcnとすると、(cn+1)=(1/2)(cn)+2\n\nこれを変形して、(cn+1)-4=(1/2)<(cn)-4>\n\nつまり(cn)-4=(-7/2)・(1/2)^n-1=(-7)・(1/2)^n\n\nよってcn=4-7・(1/2)^n\n\nこの両辺に2^nをかけてan=4・2^n-7 (n≧1)\n\nとなります。\n分かりにくくてすいません!\n\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["名古屋大学医学部"," ","メイメイ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/ilHZKYOfiHRc1bK4rehk","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"対数の計算"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"そもそも対数:logとは何でしょうか。\n a^p=M(a>0, a≠1, M>0)・・・①\nという等式が成り立つとき、\n log a(M)=p・・・②\nという等式が同時に成り立ちます。aを「底」、pを「指数」、Mを「真数」といい、log a(M)を「aを底とするMの対数」といいます。式②を見ればわかるように、log a(M)とは、「aを何乗したときMになるか」と言う値、すなわち、指数を表すものです。例えば、\n log a(XY)=log a(X)+log a(Y)・・・③\nが成り立つのも、このとき\n a^s=XY\nと言う関係が常に存在し、X=a^t、Y=a^uとすると、\n XY(=a^s)=X × Y\n       =a^t × a^u\n       =a^(t+u)\nとなり、したがって、\n s=t+u・・・④\nという関係を導くことができるからです。①と②から、XY、X、Yについても同様に、\n log a(XY)=s=t+u\n log a(X)=t\n log a(Y)=u\nと表せるので、結果として④は、\n log a(XY)=log a(X)+log a(Y)\nという式③になります。このように、logは、「対数」という名はあれど、その実「指数」のことを表しているのだということを頭に置いておくこと、つまり、①と②の対応関係を常に意識することが対数の理解の一助になるかもしれません。「logの数の大きい問題」というのがどんな問題を指すのかわからなかったので、ご期待に沿う回答ではないかもしれませんが、ご容赦ください。また、私の理解が誤っている場合は、これも申し訳ございません。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学法学部"," ","たけなわ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1a","ad-on-advice-list-8",{"id":"ad-on-advice-list-8"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/opBhamEBEoAxXtWx7Wqr","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"ベクトルがどうしても苦手です。"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1d"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","hiroki"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":121}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math6.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/eSc8XWwBTqPwDZPuNLzd","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数学公式"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"\n文系ですが答えさせてもらいます。(数学は使ってました)\n\n今でもそうなんですが、公式の仕組みが納得できないと個人的には気持ち悪くてしょうがないんですよね。\nどうしてこの公式になるかを納得する\n→公式を暗記\n→実際に公式を使って、使用方法と公式を頭に定着させる\n\nこんな感じですかね。\n理由としては、1番はそうじゃないと気持ち悪いっていうのがあるんですが、、、笑笑\nでも、実際問題、公式の導出を問われたりする問題ありますし、また、公式の仕組みが分かってないと解けないような問題も一定数あります。\n特に、三角関数・微積分・シグマ計算あたりの公式は導出過程を理解できてると、数学的な思考力の幅が広がるイメージあります。\nもちろん、導出過程を知らなくていいのもあります。でも、一回は導出にチャレンジしてみるといいです。それで、「あー、これは公式だけ覚えておけばいい感じかな?」みたいなやつもたくさんあります。導出過程がめんどくさかったりするから、わざわざ公式にされているんで、それを覚えてしまうこと自体悪いことではないです。\n\n公式の結果だけを覚えておくパターンのやつは、とくに物理・化学に多い印象ですね。「実験の結果、こうなった」とか、「この公式を定義とする」みたいのは、理科系では多いです。そういうのは、あまりこだわらず、一回くらい説明書き読む程度でいいと思います。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学商学部"," ","タイ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math4.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}]]}]}]]}]}]