UniLink WebToAppバナー画像

数Ⅱ 図形と方程式 線分の内分点の軌跡

クリップ(0) コメント(4)
6/19 20:44
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

Naoki

高2 埼玉県 島根大学総合理工学部(49)志望

点Qが直線y=x+2上を動くとき、点A(1.6)と点Qを結ぶ線分AQを2:1に内分する点Pの軌跡を求めよ の答えが直線y=x+3になる理由がわからないです。 解き方を教えて下さい。

回答

回答者のプロフィール画像

たけなわ

北海道大学法学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
実数qを用いて点Qの座標を表すと、点Q2が直線y=x+2上にあることから、Q(q, q+2)となります。これと点A(1, 6)を結ぶ直線を2:1に内分する点がPなので、内分点の公式により、その座標はP((2q+1)/3, (2q+10)/3)となります。このとき、点Pのx座標とy座標の関係を式で表すと、x=(2q+1)/3、y=(2q+10)/3=(2q+1)/3+9/3であることから、y=x+3となります。よって、求める点Pの軌跡は直線であり、その方程式はy=x+3であると求められます。記述の際は、このあとに「逆に、点Pが直線y=x+3にある時 とき…」といった感じで、求めた答えがちゃんと必要十分となるように逆からの検証を補充する必要があった気がしますが、そういった細かい記述の要素については流石に覚えていないので、ご自身で教科書等を参照してください。数式が見づらかったら申し訳ありません。
UniLink パンフレットバナー画像

コメント(4)

たけなわのプロフィール画像
たけなわ
6/19 20:46
訂正 1行目「点Q2」→「点Q」 11行目「時 とき…」→「とき…」
たけなわのプロフィール画像
たけなわ
6/19 21:19
因みに補論ですが、今、qの条件は実数とだけしか設定していないので、qはすべての実数値をとりうることになります。上の回答では、そのような、全ての実数値をとりうるqに対し、点Pにおいたy=x+3の関係式が成り立つということを言っているわけです。すなわち、点Qは直線y=x+2上の全ての点をとりうる点であり、かつ、直線y=x+2上のどこに点Qがあっても、点Pにおいて必ずy=x+3の関係式が成り立つということになるので、どんな点Pでも必ず直線y=x+3上にあることになるということです。問題の条件が複雑になればなるほど、求める軌跡にも条件が複雑に追加されていきます。今回の問題では、至ってシンプルな条件設定だったので、答えとなる軌跡も、簡単なもので済みました。
Naokiのプロフィール画像
Naoki
6/19 23:19
ありがとうございます!
たけなわのプロフィール画像
たけなわ
6/20 3:10
https://hiraocafe.com/note/kiseki.html https://todai-counseling.com/?p=1814 上の2つは、軌跡の問題についてわかりやすく解説されているWebページです。宜しければ是非ご参考に。

よく一緒に読まれている人気の回答

数Ⅱ 図形と方程式 線分の内分点の軌跡
 実数qを用いて点Qの座標を表すと、点Q2が直線y=x+2上にあることから、Q(q, q+2)となります。これと点A(1, 6)を結ぶ直線を2:1に内分する点がPなので、内分点の公式により、その座標はP((2q+1)/3, (2q+10)/3)となります。このとき、点Pのx座標とy座標の関係を式で表すと、x=(2q+1)/3、y=(2q+10)/3=(2q+1)/3+9/3であることから、y=x+3となります。よって、求める点Pの軌跡は直線であり、その方程式はy=x+3であると求められます。記述の際は、このあとに「逆に、点Pが直線y=x+3にある時 とき…」といった感じで、求めた答えがちゃんと必要十分となるように逆からの検証を補充する必要があった気がしますが、そういった細かい記述の要素については流石に覚えていないので、ご自身で教科書等を参照してください。数式が見づらかったら申し訳ありません。
北海道大学法学部 たけなわ
0
0
理系数学
理系数学カテゴリの画像
座標を求めるには
P(t,t^2)とおくとQ(2t,0)と表せて、 直線PQ: y=-t 2t^2 が得られる。 この直線とy軸との交点RはR(0,2t)である。 したがってt→0のとき2t→0だから Pが原点に限りなく近くとき(t→0ということ) Rの極限の位置の座標は(0,0)である。
東京大学理科二類 とらしま
1
1
理系数学
理系数学カテゴリの画像
軌跡
t→x、t→yの変換から上手くx→yの変換にしたいのでやっている操作はt→xの逆写像のx→tを用いてx→t→yです。これによりあいだにtをかましてx→yの写像が軌跡として現れるというのがザックリした説明になります。
東京大学理科一類 k.ogi
4
0
理系数学
理系数学カテゴリの画像
微分の応用
X(t)に関して 速度dx/dt=vとする。…① すると、加速度d^2x/dt^2=d/dt•(dx/dt)=dv/dt …② となる。 次にt(x)に関して dt/dx=1/(dx/dt)=(①を用いて)=1/v…③であり、 d^2t/dx^2=d/dx•(dt/dx)=(③を用いて)=d/dx•(1/v) (これは合成関数の微分に相当するので) =-1/v^2•dv/dx=(vの変数としてのxはかなり扱いづらいので、tに変数変換して)=-1/v^2•dv/dt•dt/dx となる。②、③を用いて変形すると、 d^2x/dt^2=-v^3•d^2t/dx^2 となる。あとは①を代入して、答えは {}=-(dx/dt)^3となります。 あってるかな、、?なんにせよこうゆうのにチャレンジしてみる姿勢は素晴らしいと思います。
東京大学理科一類 Atom
2
2
理系数学
理系数学カテゴリの画像
センター数学
センター試験の集合は、実数の集合を扱うことが多いため、数直線上に図示するのが有効なことが多いです。 目盛の間隔を正確に図示する必要はなく、それぞれの端の大小と、黒丸白丸があっているかが重要です。(黒丸の場合はその点を含む、白丸の時はその点を含まないことを表します。不等号に=が入っているかどうかの違いとも言えます。) 例えば、 p: x>1 q:x≦2 のように与えられていた時、右向きの数直線上に左から1と2の点を書きます。 pについては、x>1(つまり「xは1より大きい」)であることから、先ほど書いた1の点に白丸を書き、そこから右上がりに少し直線を書き、そこから右向きに直線を伸ばします。新幹線のような形になります。この形は、1の点を含まないことを表すもので、白丸と同じ意味ですが、ぱっと見で分かるように両方使います。また、この線がpであることをどこかに書いておいてください。 qについては、x≦2(つまり「xは2以下」)であるので、2の点に黒丸を書き、そこから真下に少し直線を書き、左向きの直線を伸ばします。こちらは、電車のような形になります。この形は、2を含むことを表すもので、黒丸と同じ意味です。こちらの線にも、qであることを書いておいてください。 このように、範囲を一つ一つ図示していくと、次のようになります。 _______________ p / 2 ---------○-----●------->x 1 | q --------------- これを見れば、「pかつq」や、「pまたはq」「p⇒q は真か偽か」はすぐに分かるはずです。たとえば「pかつq」なら、pとqが重なっているところなので、1<x≦2になります。「pまたはq」ならば、pとqの少なくともどちらかがある範囲なので、xは全ての実数になりますね。「p⇒qは真か偽か」については、pの中にqが含まれていないので、pならばqとはいえません。よって、偽となります。 上図の縦棒や斜め棒の長さを条件ごとに変えれば、一つの数直線にもっとたくさんの条件を書き込めます。そのようにして、一つの数直線に与えられた条件全てについて書いておくと、かなり簡単になると思います。 また、「(pかつq)または(rの否定)」といわれたときは、pとqとrとは別に、「pかつq」や「rの否定」についても書くと、分かりやすくなります。 加えて、たまに、条件式をそのまま使うと面倒くさいことがあります。そういう場合は、対偶を取るのが良いです。(そこまで多くはないし、絶対になければ解けないわけではないため、これ以後ついては忘れても大丈夫です) 「p⇒q」と、「(qの否定)⇒(pの否定)」(対偶)は同じ意味です。また、[(aかつb)の否定]と[(aの否定)または(bの否定)]は同じ意味です(ド・モルガンの法則)。これらをつかうことで、 ・「または」を「かつ」に変換できる ・aやbの代わりにaの否定やbの否定を使える という利点があります。このような利点が使えそう!と思ったら使ってみてください(とりあえずわかんなかったら対偶とってみる、っていうのも一つの手ではあります)。 ※(rの否定)などは、本来はrの上に横棒を書いて表します 至らないところもあったかもしれませんが、貴方の合格を願っています。それでは。
早稲田大学先進理工学部 ROX
19
0
文系数学
文系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
34
8
文系数学
文系数学カテゴリの画像
ひらめきが足りない
受験数学にひらめきは全く必要ありません。 実際、数学者と数学の得意な高校生が、受験数学で勝負すると高校生が圧勝します(実話です)。一体何が、高校生を勝たせるのだと思いますか? 受験数学には、確かに、「ひらめきのようなもの」を要求する場面があります。特に整数問題などで顕著ですが。しかし、ほとんどの問題は、今まで身につけてきた解法で対応できてしまうんですね。 例えばですが、多変数関数 f(x,y)の最大値、最小値を求めよという問題が出たとします。(f(x,y)の中身は、例えば、x^2 3xy y^2などですね。ここではそれは本質ではないのでスルーします。)その時、方針が何通りかあるんですが、それを列挙できますか? あるいは、図形問題に対して、どのようなアプローチを考えるべきか説明できますか? (答えはどちらも回答の最後に載せますね) もし1つも分からない場合や、何個かしか挙げられない時は、少し補充的な勉強をする必要があります。 問題ごとに、それを解くための最適な方針がありますね。それをメモ程度で十分なので、どんどんまとめていってください。すると、多種多様に見える問題も、スタートは必ず同じことをしていたり、何個かのパターンの方針しか使っていなかったりします。本当はこういうことを分かっていくのは、問題演習を通してだんだん培っていくべきものなんでしょうが、99%の人は出来ないでしょう。僕も全然出来ませんでしたし。 なんにせよ、こういう「解法の整理」をしていくと、全く手が付かない問題はほとんどなくなってきます。途中までは行けるようになるんですね。そして、「ひらめき」は大抵こういう場面で使うものですね。例えば最後の最後に有名不等式を使ったりなどでしょうか。しかし、これすらも、方針としてカテゴライズすることが可能です。いわゆる純粋なひらめきは、受験数学においてはあり得ないといって良いでしょう。大抵、「閃かない」時は、解法が浮かばない時です。かなり具体的な問題に帰着できましたね。 僕は、ノートの見開き1ページに、この問題が来たら、この方針がよく登場する!というフローチャートのようなものを作っていましたね。頭の中が整理されていく感じがして楽しいですよ。 ちなみに、基礎ができていないということは、多少あるにせよ直接的な原因ではなく、いくら固めたところで、成果が微々たるものしか出ないので、気をつけましょう。青チャート、フォーカスゴールド、どちらも持っている時点でフル装備なので、多少の復習はもちろん必要といえども、頑張る必要はありません。 さて、先ほどの問題、わからずじまいは良くないですから簡単に 多変数関数の最大最小問題: ・等式があればxかyに代入してそれを消去する(いわゆる文字消去) ・xかyのどちらかを定数とみなし、ただの1変数関数とみなして考える(いわゆる文字固定) ・有名不等式の利用(相加相乗平均の関係、コーシーシュワルツの不等式、三角不等式など) ・逆像法 ・線型計画法 ・グラフを書いて考える Etc. 図形問題のアプローチ ・まずは初等幾何で解けないか考える。 ・次に、位置ベクトルを導入することで、内積などを利用して解けないか考える。 ・もし対称性の高い図形だったら、座標平面を設定するのも考える。 僕がこの解法整理についての対策を編み出し、始めたのは12月の半ばです。今なら相当早いタイミングから対策できますから、ぜひ過去問での得点をぐんぐん挙げて、自信をつけていってほしいと思います。 では、有意義な秋をお過ごしください!
東京大学理科一類 ひこにー
147
0
文系数学
文系数学カテゴリの画像
標準問題精講に取り組めるレベルか
ご質問にお答えさせていただきます!東京大学理科一類現役合格の者です。 進研模試の数学の偏差値が64ほどということは、そこまで基礎がなっていないと言うことでもないように感じます。 現在高2ということはあと数ヶ月ほどで高3ですよね。京大志望ということであれば時間がとにかくないので、はっきり言って今の時期からの基礎問題精講は時間の無駄のように感じます。なおさら貴方のようにある程度できているようであればなおさらです。 もしそれでも問題が難しくて中々解き進められないと言う場合は、その分野の青チャートの例題をササッと確認して基礎を見直すと言うのが効率の良い勉強法だと思います。 また、とにかく解いていて楽しいと言うことであれば必ず成長できると思いますよ!苦でなければ人はある程度のことは続けられます。 ただ注意点として数学の解答例を見るときは式の操作の意味(目的)を常に意識してよむようにしてください。ここに大きな勉強の質の差が生まれると私は思っています。 簡単なたとえですが、放物線の二次式を見たら大抵の人は平方完成をまず行うでしょう。 ではそれはなぜでしょうか? 私たちは放物線を始めに学習したときにy=x^2からまず習い、次にy=x^2+cのy方向への平行移動を、そしてy=(x+b)^2のx方向への平行移動を、最後にy=ax^2の放物線の開き具合について習ったかと思います。これらをすべて組み合わせたのがy=a(x+b)^2+cという式になり放物線に関する諸情報が得られる訳です。 こんな風に解答にある式変形は「何の情報をどんな手段で導こうとしているのか」を常に意識し理解し自分のものに落とし込みましょう。ぱっと分からなかった場合は自分で書き込んでおくのもいいかもしれません。 また、解いた問題には何か記しやコメントを書いておくといいと思います。私の場合は、☆key問題、○普通に解けた、△少し迷ったけどなんとか解けた、×解けなかった、そのほかにも「良問!」「なるほど!」「分かるか~!」(コメントは割と自由)など書いていました。 そうすると復習をするときに見返しやすいですし、思い出しやすいように感じています! とりあえず標準問題精講レベルは春休みの間に修了することを目標にして、入試問題の王道的な解き方を習得しましょう。そうすれば高3から少し上の問題集や志望校の過去問演習にスムーズに取り組むことができるはずです。 他に何か質問があれば何なりとしてください。応援しています!
東京大学理科一類 ryu031ki
4
4
理系数学
理系数学カテゴリの画像
極限について
(以下、^は累乗演算を表します。例えば、e^xはeのx乗、3^2は3の2乗で9です。) 1-x = -yを代入します。 lim(x→1){x^(1 / 1-x)}=lim(y→0){(1+y)^-(1/y)} =lim(y→0){(1+y)^(1/y)^-1} = 1/ [lim(y→0){(1+y)^(1/y)}] []の中はeの定義よりeなので、答えは1/eとなります。 (eの定義:lim(x→0){(1+x)^1/x}=e)
東京大学理科一類 さしみポン酢
0
1
理系数学
理系数学カテゴリの画像
式と曲線と複素数平面
こんにちは。 複素数平面と式と曲線の勉強についてですね。 基本的には今持っている青チャートとプラチカで十分だと思います。 基礎が危ういなら青チャートの例題などを丁寧に解いてみてください。時間はあまりないので、これ解ける!って自信のある問題は飛ばしてもいいです。終わったら、プラチカで演習してみましょう。もし難しくて解けないのであればもう少しレベルを落としたら良いと思います。個人的には北大の問題とかは難しすぎずにためになりました。 式と曲線は微積と組み合わせて出てくることが多いです。微積の問題解く中で思い出しながらやってみてください。あまり出ることはないと思いますが、もし出たら焦るので、極方程式や楕円、双極線の性質などは青チャートなどで復習すると良いと思います。 頑張ってください!
慶應義塾大学理工学部 Eri
3
2
理系数学
理系数学カテゴリの画像