UniLink WebToAppバナー画像

数学の分からない問題の勉強方法

クリップ(14) コメント(1)
3/12 0:03
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

ほさか

高3 山梨県 神戸大学医学部(61)志望

数学の問題を解いている時に問題文を読んでも手も足も出ない場合、すぐに答えを見てしまいます しかし、「数学ですぐに答えを見る勉強をしていると伸びない」と言われました では、手も足も出ない場合どうしたらいいですか?

回答

Na

名古屋大学経済学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
ほさかさんの質問に答える前に、少し遠回りをさせてください!! 私は数学の実力をつけるために ①解法暗記 ②複数の解法を組み合わせる、複数の解法から一つに絞る力をつける(数学的思考力をつける) ことが大切だと考えています。 ①では「すぐ答えを見ること」は正しいですが、②では逆に長考することが推奨されます。 手も足も出ない問題とは方針がまるっきり立たない問題だと推測します。 方針が立たない場合、そもそも解法を知らないパターンと、どの解法が使えるのかわからないパターンがあります。前者は①に、後者は②に対応します。 ① 解法暗記をすべき問題は青チャートの例題が特にそうですし、京大でもそうカテゴライズされるべき問題はあります。(京大理系2022大問3のユークリッドの互除法など) 例えば青チャートを終えたとしても、発展問題の演習の中で出てきた新しい解法を知識として蓄えることは重要なんです。 それと一応説明すると、解法暗記とはある問題のパターンに対してどのような解法が合致するのか覚えるということです。数学の性質を根拠に基づいて解法を覚えるべきことです。(部分的には高度な内容もあるで、初学〜中級者の方はパスしても構わない場合もあると思います) ② 目新しい条件が設定されていたりして、どんな解法が使えるかすらわからない時や、一見典型問題に見えていつも通りな解法が通じない時があります。そのような問題に対処するためにはとにかく時間をかけていろいろ試す他ありません。値を代入したり、より簡単な条件で考えてみるなどの実験から着想を得て既知の解法に帰着することや、別の分野から問題を考えてみる(たとえば、微積の問題だけど、ベクトル、三角関数、図形の性質の分野の解法を使う)ことなど色々試すパターンがあります。どんなパターンがあるかを多くの問題を解く中で経験していくことが重要です。
(=数学的思考力をつける、という意味で私は使います) ここからほさかさんの質問に答えます! ①解法暗記②数学的思考力をつける、の両方の面で多くの問題を解くことが一番大切になります。知識を網羅してさらに定着させるためです。 青チャートなどの網羅系参考書では回転率を上げてまさしく解法を網羅するのが良いと思います。多くの問題を解くことが一番の目標です(理解が二の次でいいということではありません)。この段階では、解法を知らないのだから、わからない問題は答えをすぐにみるべきです。 プラチカなどの演習問題の載っている参考書でも、多くの問題を解くことが目標となります。演習問題を解く理由は二つあり、一つは解法暗記の知識を定着させること、わからない問題に対し試すことのパターンを知ること、またそれを定着させることです。手も足も出ない問題に対処するパターンを知らない段階では手も足も出ない問題の答えはすぐ見るべきです。演習を繰り返すうちにいずれ手と足が出るようになります。そのときからいろいろ試すと解ける可能性が出てくるため、時間をかけて演習する価値が出ます。 ⒈網羅系参考書では答えをすぐに見て良い。 ⒉演習不足の段階では手も足も出ない問題の答えはすぐに見て良い。 ⒊演習して手と足が出てきたら難しい問題も時間をかけると良い。 受験を通して思った個人的な思想なので参考までにしてください!
UniLink パンフレットバナー画像

コメント(1)

ほさか
3/13 16:01
ありがとうございます! 自分が疑問に思っていたことが鮮明になりました!

よく一緒に読まれている人気の回答

数学の分からない問題の勉強方法
ほさかさんの質問に答える前に、少し遠回りをさせてください!! 私は数学の実力をつけるために ①解法暗記 ②複数の解法を組み合わせる、複数の解法から一つに絞る力をつける(数学的思考力をつける) ことが大切だと考えています。 ①では「すぐ答えを見ること」は正しいですが、②では逆に長考することが推奨されます。 手も足も出ない問題とは方針がまるっきり立たない問題だと推測します。 方針が立たない場合、そもそも解法を知らないパターンと、どの解法が使えるのかわからないパターンがあります。前者は①に、後者は②に対応します。 ① 解法暗記をすべき問題は青チャートの例題が特にそうですし、京大でもそうカテゴライズされるべき問題はあります。(京大理系2022大問3のユークリッドの互除法など) 例えば青チャートを終えたとしても、発展問題の演習の中で出てきた新しい解法を知識として蓄えることは重要なんです。 それと一応説明すると、解法暗記とはある問題のパターンに対してどのような解法が合致するのか覚えるということです。数学の性質を根拠に基づいて解法を覚えるべきことです。(部分的には高度な内容もあるで、初学〜中級者の方はパスしても構わない場合もあると思います) ② 目新しい条件が設定されていたりして、どんな解法が使えるかすらわからない時や、一見典型問題に見えていつも通りな解法が通じない時があります。そのような問題に対処するためにはとにかく時間をかけていろいろ試す他ありません。値を代入したり、より簡単な条件で考えてみるなどの実験から着想を得て既知の解法に帰着することや、別の分野から問題を考えてみる(たとえば、微積の問題だけど、ベクトル、三角関数、図形の性質の分野の解法を使う)ことなど色々試すパターンがあります。どんなパターンがあるかを多くの問題を解く中で経験していくことが重要です。 (=数学的思考力をつける、という意味で私は使います) ここからほさかさんの質問に答えます! ①解法暗記②数学的思考力をつける、の両方の面で多くの問題を解くことが一番大切になります。知識を網羅してさらに定着させるためです。 青チャートなどの網羅系参考書では回転率を上げてまさしく解法を網羅するのが良いと思います。多くの問題を解くことが一番の目標です(理解が二の次でいいということではありません)。この段階では、解法を知らないのだから、わからない問題は答えをすぐにみるべきです。 プラチカなどの演習問題の載っている参考書でも、多くの問題を解くことが目標となります。演習問題を解く理由は二つあり、一つは解法暗記の知識を定着させること、わからない問題に対し試すことのパターンを知ること、またそれを定着させることです。手も足も出ない問題に対処するパターンを知らない段階では手も足も出ない問題の答えはすぐ見るべきです。演習を繰り返すうちにいずれ手と足が出るようになります。そのときからいろいろ試すと解ける可能性が出てくるため、時間をかけて演習する価値が出ます。 ⒈網羅系参考書では答えをすぐに見て良い。 ⒉演習不足の段階では手も足も出ない問題の答えはすぐに見て良い。 ⒊演習して手と足が出てきたら難しい問題も時間をかけると良い。 受験を通して思った個人的な思想なので参考までにしてください!
名古屋大学経済学部 Na
14
7
理系数学
理系数学カテゴリの画像
解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
62
6
文系数学
文系数学カテゴリの画像
なんとなくで解いてしまう
こんにちは😃 現代文を解く上で最も大事なことはその文章が何を言いたいのかということを掴むことだと思います。 特に評論文などは筆者の主張が言葉を変えて、何回も登場してきます。だから、キーワードとなる語や繰り返し出てくる語にはチェックを付けて読んでいました。 また、二項対立で論じられている文章では一方の事柄については普通に線を引いて、もう一方の事柄については波線を引いていました。同じように筆者の中でプラスの事とマイナスの事も後から見て分かるように違うマークを付けて区別していました。共通テスト模試は時間制限も厳しく、丁寧な読解はなかなか厳しいですが、練習の中で主張の言い換えを見つけたり、対立軸を意識する事が大事になってくると思います。あと、当然ですが接続詞や文意を変えたりする表現には気をつけて読みましょう! なので、現代文を解く上で身につける力としては、その文章の言いたいことをできるだけ早く見抜くことです。 なかなか難しいことですが、これに関しては問題演習をして経験値を積むしかないです。実際にペンを持って言葉と言葉をつなげたり、文章にマークや線を引く練習をしていくことが最初の内はベストだと思います。 とにかく、自分の中で筆者の意見や考えが分類できていることが分かり、整理されていれば大丈夫です🙆‍♂️ また、完璧に筆者の言いたいことが分からなくても全然オッケーです。あくまで、問題に正解することがやるべきことで、主張を理解するのはそのための足掛かりですから。 あと、選択肢を消す際に数字や記号のところを消すのではなく、間違っている箇所に印を付けるクセも大切です。一発で答えが出せる設問もありますが、共通テストレベルの問題でもイヤらしい問題が多く、その場合消去法でしか消せない時があり、わずかな違いが大切になってくるからです。 それから、質問者さんがどのような形で現代文を取り組んでるか分かりませんが設問を先に読んで問われることを先に分かっておくことは共通テストの現代文を速く解く秘訣だと思います。選択肢までは見ないですが、共通テスト特有の図表やグラフの問題は先に見ておくと結構すぐに解けることがあります。 最後に、私もいつもできたわけではないですが、自分と文の筆者、そして作問者の3者を問題を解く際に意識してました。なぜこの文章を大学側が出し、ここに傍線部を持ってきているのか、共通テストであれ、個別入試であれ国語という入学試験である以上必ず意味があるはずです。問題を作っている人の意図や大学側の伝えたいメッセージを考えながら俯瞰して読めことができるようになれば現代文に関しては大丈夫です。 現代文の読解は人それぞれなので私の読み方が必ずしも正しいとは限りませんが、是非参考にして下さい! 受けておいた方がいい模試に関しては河合塾の早慶レベル模試や代ゼミの早大入試プレなどです。 やはり冠模試は実際の受験者が多く受けるので、自分の立ち位置を知る上で非常に役に立ちます。 また、質問があればぜひ聞いてください!
慶應義塾大学経済学部 Ryo
29
7
模試
模試カテゴリの画像
文系数学を得意にするには
①「この問題にはこの解法だといった定石がおさえられていない」のが原因か? →おそらくそうです。 ②どのようなことをすればいいか?学校で配られた共通テスト対策用の問題集でいいか? →いいとおもいますが、やり方が肝心です。 ③数学Bの選択分野を確率分布にするのはどうか? →今数列とベクトルに関する知識が全くないというわけではないなら、変えない方が賢明だと思います。 ①について。大学入試共通テストの試行調査の問題を見たところ、おおかたセンター試験と変わらないなという印象を受けました。2つの試験に共通する必要な能力は、高校数学の基本〜標準的な問題に素早く正確に答える能力です。 それをするには、やはり典型問題の解法の記憶が不可欠といえるでしょう。たとえば、教科書にも載っているような公式や定理を正確に覚え(導出の説明ごと覚えたいが、難しいなら最悪丸暗記もやむなし)、どういう場面で使うかも知っておきましょう。公式や定理では無い場合でも、典型問題の解法はまず初めに何をするか記憶してください。このように、問題を読んだらすぐ考えて手が動くように「定石」を抑えることが、共通テストの数学には必要です。 共通入試特有の「思考力を試す問題」も、結局は知っている知識を使いこなせるかを問うてるに過ぎず、指導要領を超えることは当然ないですから、「定石」をしっかり押えた上で、よく読んで典型の問題とどこが同じなのか、どう言い換えられているのかを考えるようにしましょう。やはり全ては、パターン解法の記憶からスタートだと思います。 ②について。では、どのようにすればそれが効果的に得られるかですが、やはりたくさんの問題を解いて覚えるのが一番の近道であると考えられます。問題集は一定の難易度があればなんでもいいです。学校の問題集に加えて、共通テストの試行問題と模試、予想問題、センター試験の過去問なんかも練習材料になるでしょう。 しかし、それらを闇雲に何も考えずに解いて丸つけして、では、先程述べたような「定石」に記憶は難しいです。ですから、問題ができなかったときは、何をどのように知っていたら解けたのかを考える癖をつけましょう。「○○を求める問題では△△が必要だから、初動で□□する」といったように日本語で整理しておくのもいいでしょう。 そして、時間に余裕があるなら、それを覚えた上でもう一回解答などを見ずに解いてみましょう。そういったことを繰り返して確実に定着させてください。また、それによって計算力が上がることも見込まれます。 ③について。数列やベクトルを、基本のところから全く知らないならまだしも、今から確率分布にするのは得策とは思えません。 ①でも述べたように、共通テスト数学は前提となる知識を知っているのがスタートラインです。典型解法などがそれです。受験する分野を変えるということは、それを一から覚え直すということになってしまいます。いくらできないとしても、さらに知らないものに手を出して、出来るようになることは稀です。 以上のように、知らなければならない事項をしっかり覚え、それを意識しながら十分な量練習すれば、点数は上がるはずです。他の科目の進捗にもよりますが、数学はしっかりやれば安定すると思われますので、まずは志望大学のボーダーを目指してください。参考になれば幸いです。頑張って!
名古屋大学法学部 しゃぶや
17
6
文系数学
文系数学カテゴリの画像
青チャートは出来るがプラチカが解けません。。。😭
こんにちは! 大阪大学人間科学部の、のぞみといいます。 私は青チャート→1対1→プラチカのルートをおすすめしていますが、青チャートの使い方によっては1対1を飛ばしても大丈夫だと思っています。 京大受験をする人は多くがプラチカレベル、もしくはスタンダード数学という参考書までやると思うのですが、 青チャートで対応する人もいます。 要は、どこまで参考書に書いてある知識を自分のものにできるかなので、1番大事なのはやり方です! プラチカは私もやっていましたが最初はほんとにわからないです。ので、次のような方法でやってみてください。 ①問題を解く ②完璧に解ければもうその問題はやらない。 ③つまってしまったり、わからなくなったら、すぐに何がわからないかを明確にして書きだす。 ④答えを見る。 ⑤答えを理解する ⑥自分にどんな知識または発想があれば解けたのかを書き出す。 ⑦何も見ずにもう一度解く。 ⑧⑥で発見した弱点をつぶす。 わからなかったら、何がわからないのかを答えを見る前にはっきり書き出すこと。 そして答えをすぐ見ること。 この2つを大切にしてください! 春と夏はこのやり方で、自分の弱点を潰して、応用力を磨くことを意識します。 自力で解けるようになるための演習は秋から過去問、またはスタンダード数学でやっていきます。 もしあまりにもプラチカが大変でしたら青チャートのエクササイズをやるといいかもしれません。 ただ感覚的にはプラチカと同じかちょっと簡単ぐらいだと思いますので、プラチカをやればいいと思います! プラチカは最終的に受験のときに完璧になればいいので、今の時点では焦らなくて大丈夫です!! 陰ながら応援しております! また分からないことなどあれば、いつでもきいてくださいね!
大阪大学人間科学部 のぞみ
41
9
文系数学
文系数学カテゴリの画像
数3の基礎問題精講と網羅系問題集について
受験勉強お疲れ様です。 結論から述べると、目的と段階によりますが、基礎問題精講と1対1シリーズの2冊で、基礎から標準レベルの、数学Ⅲの一通りの解法パターンは習得できる(※ただ基礎問題精講だけでは解法パターンは網羅できていないかな)と思いますし、一旦まず数Ⅲを一通り学習するというのであればそれで十分ですが、東工大を目指す上では別の観点から、多少馬力不足な気がします。また数Ⅲを学習する際は、数Ⅲの性格をよく知った上でやるのが効率も良いですし、得策かと思われます。僕の受験体験から数Ⅲに関して2点特徴を挙げます。 1点目、入試問題の数Ⅲは、おおよそ、傍用問題集に乗るような基礎的標準的な問題から、誰も完答できないような難問奇問まで多岐に渡ります。数1A2Bの場合には難問奇問はあまり出ません。ですが、最難関大を狙う学生たちはやはりレベルが高いため、難度の高い問題(過去問で言うレベルCやD)でも部分点ぐらいは狙ってきます。ですので、標準問題を反復するだけでは足りません(もちろん標準問題の反復は大事ですが)。もしAkiさんが一通り数Ⅲの標準問題を解けるようになったのなら、少し難度の高い問題や思考が必要な問題にも触れる必要があります。 2点目、数Ⅲは1A2Bに比べて計算量が著しく多いです。特に東工大は工業大学であるがゆえ、数Ⅲの出題では極限と微積が大部分を占めており、計算量も日本のどの大学に比べても類を見ないほどです。その一方で、基礎問題精講や1対1、チャートなどは解法パターンを習得することに主眼を置いているため本物の入試数学(特に東工大の数学)とは少々趣が異なります。つまり計算は軽めです。 以上2点からアドバイスを述べますと、基礎問題精講と1対1で解法パターンの習得は十分です。チャート式などに手を出す必要はあまりないと思われます。それよりかは、東工大レベルの息の長い計算力と思考力を少しでも鍛えるためにも、上記2冊で解法パターンの習得が済んだのならば少し上のレベルの問題を解く方が良いです。おすすめとしては、それこそ東工大の過去問に触れてみるのが一番手っ取り早いです。もちろん受験生の身としては過去問は残しておきたいのも分かりますが、結局は過去問は直近の5〜10年ぐらいをやれば十分ですので、直近10年だけ残しておいてそれより前の過去問を問題集のように解くのが得策です。他には上級問題精講・やさしい理系数学(←簡単ではない)、理系プラチカ数Ⅲなども東工大等の最難関大受験生にはおすすめです。これらの少し上のレベルの問題を解くことで負担の大きい計算力と息の長い思考力を鍛えましょう。 ちなみに1A2Bは難度の高い問題ばかりを解くよりは標準的な問題をこなす方が良いです。 長ったらしく拙い文章で申し訳ありませんが、僕のアドバイスが少しでもためになれば幸いです。 東工大の数学はやはり難しいです。ですが、そのレベルの高さにめげずに、むしろ数学極めてやるぐらいの勢いで、晴れて合格を掴み取って欲しいです。頑張ってください!
一橋大学経済学部 たぐふく
9
6
理系数学
理系数学カテゴリの画像
数学の解法を思い付くためには
受験数学の問題は解法がすぐわかるものと分からないものの2択です。それは大体分野によってまちまちですが、僕の場合、整数、確率、複素数平面、以外は解放暗記で押し通しました。 そして、整数、確率はとにかく思考力をつけるために長い間考えるようにしました。なるべく答えをみない。 僕の出した結論 確率は図を書きながら問題把握して、漸化式を立てるか立てないかの2択。漸化式は全て解放暗記ゲーで、立てない場合は、全て数え上げる系か、独立の事象で積の法則の考え系の2択。 整数は、マスターオブ整数をやって、背景を何となく知りながら、問題を解く際には具体値でとにかく実験。50個くらい書き出してみる面倒さにも打ち勝つこと! 複素数平面は、実数に逃げる、極形式、図形処理する、複素のままいくの4通りのどれか。 その他の分野の個別問題で解放が思いつかない場合は、優秀な友達もしくは先生に思考プロセスを聞いてみると良いですよ。
東北大学経済学部 タタ72
16
2
理系数学
理系数学カテゴリの画像
化学を得意にするにはひたすら演習なのか?
演習の際、用意している教材は問題集のみでしょうか? もしそうなら、必ず教科書や図録を見ながら取り組みましょう。 教科書や図録を使わずに学習をする人は、丸暗記に陥りがちです。 解説が的を絞ったことしか書いていないからです。 以下詳細な回答です。 *丸暗記では勝てない *暗記の心得3カ条 *人に教えて理解を深める *まとめ ------------ 【丸暗記では勝てない】 京大の化学は丸暗記で挑む人を叩きのめす構造になっています。 基本的な事柄に対しても「なぜか?」を理解して説明できる力が必要です。 大問1…酸化還元や物質の構造に関する問題 大問2…溶液や気体の化学平衡に関する問題 大問3…有機化学に関する問題 大問4…高分子化合物に関する問題 が例年のパターンです。 計算問題や有機化学のパズルは一見論証と関わりなさそうですが、立式導出過程を問題文から理解するということが必要になってくるので、丸暗記が習慣になっている人は苦戦を強いられます。 ----------- 【暗記の心得3カ条】 駿台化学科の石川正明先生は、 「論理性」 「意味性」 「感動性」 を大切に理解暗記していきましょう、と指導されています。 「論理性」 何故そうなるのかを説明できると、自信をもって理解暗記できます。 (例) 過マンガン酸イオンが、酸性溶液中で酸化剤としてはたらく半反応式 MnO4(-) 8•H( ) 5•e(-) → Mn(2 ) 4•H2O これは何故このような式になるのか、自分なりにわかりやすく説明できるようになっている人の方が自信を持って暗記できます。 教科書と化学図録を用いて詳しく調べながら学習を進めると良いです。 「意味性」 それを理解すると何が得られるのかを知ると、理解暗記する意欲が増します。 例) ステアリン酸×3とグリセリンから成る油脂は分子量890で、これを覚えておけば高分子化合物の分子量絡みの計算が速くなる。 「感動性」 面白い、すごい、ひどい、と心動くことで暗記しやすくなります。 例) 「水兵リーベ僕の船…」に代表されるような語呂合わせ。 ------------ 【人に教えて理解を深める】 重要問題集で自分が出来た問題でも、誰かにわかりやすく解説することは出来ますか? 「論理性」「意味性」「感動性」を意識して、人に教えてみてください。 これは僕が実践してきた化学勉強法です。 友達同士で質問し合いっこしましょう。 特に模試の復習でこれをやると効果的です。 ------------ 【まとめ】 問題集 教科書 図録で演習。 人と教えあいっこで理解を深める。 京大相手に丸暗記では太刀打ちできない。
京都大学工学部 クウルス
287
19
化学
化学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
34
8
文系数学
文系数学カテゴリの画像
京大の数国の27カ年や黄色系本はやらない方がいいと言われるのですが
私自身、京大文系数学の実力は27か年の赤本で大きく伸びたと感じています。確かに、過去問の中には平均的な京大の受験生では解くことのできない難問が含まれていることもありますが、多くは反復練習によって培われる基礎力を応用することで対応できる良問です。27か年の問題を初めから全問題解くことができる受験生はほとんどいないと思います。やり方としては、ある程度数学の実力がついた時点で解き始め、わからなかった問題、途中まではわかった問題、完答できた問題などに分けて、印をつけて周回する方法がおすすめです。周回するにつれてやる問題を徐々に減らしていけば、効率も上がり実力がついてくると思います。注意すべきは、実力がついていないのにこれを始めてしまうと、挫折してしまい、途中で解き進める手が止まってしまうことです。解き始める目安としては、河合のテキストをある程度解答を見ずに解けるようになる段階だと思います。私も河合塾生だったので、目安はこの程度だと思いますが、人それぞれなので、ご自分の実力に合わせて進めれば良いと思います。ちなみにプラチカで得意分野はスラスラと解けるという状態であれば、その分野は充分だと思います。ただ、その分野だけを進めるのはおすすめしませんが。 古文奪取については、古文の記述の得意不得意に合わせれば良いと思います。私はちょうどこの時期くらいに得点奪取古文を購入したと記憶していますが、結局センター(現共通テスト)前は実力がついておらずあまり進まず、本格的にやったのはセンター後でした。共通テストで古文の実力がつくこともあるので、これについてもある程度古文の実力がついたと思う時点で始めれば良いと思います。私は共通テスト後でも間に合いました。共通テスト後は1ヶ月しかないように見えて、実は1ヶ月もあります。京大の古文の記述問題は、難しいとは言っても、そこまで複雑な問題は出ていないと思われるのて、記述に慣れることももちろん大切ですが、基本的な助動詞の意味や、古文常識を固めるのが1番有効かと思います。 今1番大変な時期かと思いますが、がんばって下さい。
京都大学法学部 りょう
20
5
時間の使い方
時間の使い方カテゴリの画像