UniLink WebToAppバナー画像

数学の勉強の仕方 高校数学が苦手

クリップ(3) コメント(3)
5/6 10:35
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

おもち

高1 東京都 慶應義塾大学法学部(69)志望

4月から高1になった者です。 私は、偏差値50くらいの中間一貫校に通っています。 今は独学で参考書学習をしています。 学校の授業では、数Ⅱの授業と数Aの授業が同時進行している状態です。 学校のカリキュラムでは、高校一年生では、数Bはまだやりませんが、個人的にはBまで先取り学習をしようと思っています。 質問内容 ・中学の時は数学が得意で,定期考査で90点代をとったことがありましたが、数Ⅰにはいってから、テストの点数が50点台まで下がってしまいました。どのようにしたら,数Ⅰが得意になれますか。 ・数Ⅱ.A.Bの先取り学習のしかたと、苦手にならないポイントを教えていただきたいです。 ・学校の問題集と、黄チャートを両立する方法を教えていただきたいです。

回答

回答者のプロフィール画像

たけなわ

北海道大学法学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
⑴ 数学を学ぶことの目的は何か  およそ勉強をするにあたって、今自らが学びつつある学問が目的としているものが一体何であるのかを明確にすることは、いかなる内容の学習の際にも必要となる基本中の基本事項です。というのも、それがわからなければ、教えられることや教科書に書いてあることを暗記するよりほかに学習のしようがなく、結局いつまでたってもその学問について理解できる段階には至らないのは当然だからです(この勉強における目的意識の重要性については、末弘厳太郎先生の著書を読んだときに大いに感銘をうけた部分であり、私の勉強観の根幹を成しています)。  ことに高校数学に至っては、その目的は「数学的に思考する力の涵養」であると言えましょう。微分や積分、指数対数、三角関数など、日常生活でこれらの知識が生きることはまず少ないでしょうし、ともすると、それらをはじめ数学的な知識の習得が目的としてあるとは考えにくい。にもかかわらず、数学において数学的な知識を習得させられるという実態を考慮すると、数学的な知識を習得することは目的ではなく手段であり、真なる目的は、与えられた問題をそれを使っていかに解決していくかという段階にあり、すなわち、数学的に物事を考えて問題の解決に取り組むその能力を養うことにあると考えられます。模試などの記述問題でも、解答部分よりもそれを導き出すまでの過程を重視して採点されることと思いますが、それもこのことを証左しているのではないでしょうか。
では、数学的に物事を考えるとはどういうことをいうのかと問えば、(私は専門家ではないので適切な答えであるかどうかは定かではありませんが)それは恐らく、その場に適切な規則、原理(いわゆる定理や公式)をうまく活用して問題の解決を図ることだ、と考えられるでしょう。この点で数学は、事実を基にその場その場に適当な法理を見出し、それを使って問題の解決を図る法律学と似通っている部分があると思います。ただ、両者を決定的に異なるものたらしめる点は何かというと、裁判官による法理の解釈によって結論に一定の幅が出る法律学に対し、数学の規則は常に客観的に不変であるということ。これが、かえって数学における問題解決を簡単にする場合があるということです。 ⑵高校数学の学習態度  脱線が過ぎました。このように考えてみると、公式や定理を理解し、頭に入れることは単なる手段であり、実際にこれを活用できなければ意味がないということがわかるはずです。したがって、数学学習で最初に努めるべきは、公式・定理の理解です。数学Ⅱ、数学A、数学Bをこれから先取りで学習しようと考えていらっしゃるようですが、これらに限らず、現在学んでいる数学Ⅰについても基本は一緒です。まずは教科書に出てくる公式や定理を理解することを心がけるとよいと思います。教科書にはそれらの証明、すなわちなぜその定理・公式が成り立つのかについても書かれていると思いますので、自分で証明でき、また人にそれを説明できるほどになれば立派なものです。
単純に暗記するだけでは危険です。受験勉強ではとかく効率が求められがちですが、そうやって小さな部分を見落としても、本番でそれが問われて見事に足をすくわれるなんてことはざらにあります。いつしかの東大ではsinθとcosθの定義と加法定理の証明が、いつしかの阪大では点と直線の距離を求める公式の証明が出題されています。定理や公式を真に理解していれば、いずれも貴重な得点源となってライバルたちを出し抜くことも成し遂げえただろう問題です。こういった問題は、いつどこで出題されるか分かりません。 ⑶問題演習の取り組み方  さて、公式・定理を頭に入れるためには、同時にそれを正しく使える力も養う必要があります。上述したように、高校数学の目的は「数学的な思考能力の涵養」であり、いくら公式や定理を頭に入れてもそれを正しく使えなければ問題解決は難しくなります。なので、同時に問題演習にも取り組みましょう。最初は教科書に載っている基本例題から、だんだんと練習問題、章末問題、そして問題集の応用問題へと段階を踏んでいきます。問題演習を通じて、どういったところでどんな規則がどのように使えるのか、またなぜそのように使えるのかということを自分自身で見極めることを心がければ、複雑な問題にも対応できるだけの発展的な思考はおのずと身についていきます。 ⑷問題集  チャートについては、使ったことがないので色と難易度の関係などよくわかりませんが、高校1年生の初期から使うくらいですから、Focus GoldやNew Action(名前はうろ覚え)などと同じようなものだとしておきます。私の高校では、日々の課題は教科書や学校の問題集(4STEP)、長期休暇の課題として
回答者のプロフィール画像

たけなわ

北海道大学法学部

42
ファン
7.7
平均クリップ
4.8
平均評価

プロフィール

気が向いたときに、気が向いたご質問に回答しています。

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(3)

たけなわのプロフィール画像
たけなわ
5/6 10:41
途中で誤って送信してしまいました。続きは以下に。 …長期休暇の課題としてチャート系の分厚い問題集を課せられました。なので、あくまでこれを参考に、普段の学習は学校の問題集を、長期休暇など、時間にある程度余裕がある期間に、その補充用として黄チャートを使うといった感じで良いのではないかと思います。 以上、なかなかに拙い長文で、貴重なお時間をとらせてしまいましたが、ご容赦いただければ幸いです。途中での誤送信につき、大変読みづらい回答となってしまったことを陳謝いたします。
おもち
5/6 11:11
丁寧に回答ありがとうございます。 数学の解法の理解や、どうしてこの解法を使うのかという点については,今まで意識をして取り組んでいましたが、公式を証明できるところまで入っていませんでした。今後は、公式を証明できるまで理解をして学習していきたいと思います! アドバイス参考になりました!ありがとうございます!
たけなわのプロフィール画像
たけなわ
5/6 11:30
文系は、数学の良し悪しが合否を大きく左右するとよく言われますので、数学にはより力を入れていきたいですね。公式・定理は、その証明を字面だけを暗記しても理解したことにはなりません。証明文の中で、何を求めようとしているのか、この仮定からどのような帰結が導かれ、またそこからどのような問題が生じ、どのような規則を使い、どのような展開となっていくのか、といったことを逐一理解するよう努めましょう。理解できないところがあれば、自分で調べるなり先生に質問するなりして、その間隙を埋めましょう。応援しています。

よく一緒に読まれている人気の回答

数学への苦手意識
こんにちは、僕も高1の頃は定期テストで0点を取るほど数学がダメダメだったので、数学への苦手意識はとても共感できます🥲 しかし以下のような勉強をすることで最終的に数学を武器に合格できたので、お伝えしようと思います! 苦手意識がある高校1年生ということで、過去問とかをやる段階ではないと思うので、割と基礎的なほうの段階についてお伝えしようと思います。 大前提を先に言います。 ①「どんな問題も、解く過程を全て紙に書いて、記述する」 二次関数の頂点を求めよといっためちゃくちゃ基本的なものでも面倒ですが絶対に途中過程を書いてほしいです。 ②「正解した問題は別解を考え、間違えた問題はできるようになるまで繰り返し続ける」 解く引き出しを増やし、解けない問題を無くしましょう。 模試でも同じで、復習の際には、解けなかった問題は絶対に解けるように、合ってた問題は別解がないか考える(楽しみながら!)ことを大切にしてほしいです。 ③「計算ミスは実力だ!!」 計算ミスだから、といって放置しないことです。計算ミスをしたら、どこでミスしたのか探して、最初から解き直しましょう。仮に共テや二次で計算ミスしたら命取りです。本当に数十点飛びます(経験あり)。 ④「解説見てもわからなかったら人に聞く」 学校の先生でも、数学できる友達でも、塾の先生でも、だれでもいいので、わからなかった問題は質問しましょう。放置しないことです。ただし、聞く前に自分で考え抜きましょう!!それでもわからなかったら聞きましょう👍 (1)やった参考書について (2)意識すること (3)これで到達するレベルはどれくらいか (1) まず基礎問題精講をやってみましょう。こんな簡単なのやる意味ある?って思っても、意外と解けない問題ってあります。そういう問題を解けるようにしましょう。基礎問題精講に関しては解けない問題は一個もない!全問すぐに解答を書き上げられる!っていう状態にしましょう。 次に青チャート、FocusGoldといった網羅系の参考書です。これもとても重要で、この先難問に当たったとき、「考える」ための「引き出し・手段」として、必ず身につけなければならないものばかりです。絶対に完璧にしましょう。仮に数学が偏差値60くらいあるとしても今一度やり直してほしいです。意外と解けない問題、あります。 ここは何周もしてほしいです。(ぼくは高2のときに青チャート1A2Bを全問3周しました、このおかげで数学偏差値49→73になりました) 面倒ですよね、、、けど受験勉強は気合いが大事です。やるしかないのでやりましょう。例題と練習問題がありますが、全部やりましょう。 青チャートは、高2,3になっても、模試で苦手分野がはっきりしててー、っていう場合にその分野を全問解く、などしましょうね!!基礎は本当に大事です。 次に1対1です(僕は挫折してしまいました)。 結構難しいです。1A2Bのうち、AとBはいらないかなーと思いました。正直ここは全部やりきれなかった、、でもいいと思います。しかしやれば得られるものはとても大きいです。たとえば、引き出しがとても増えるし、計算が重いので計算力がつきます。ぜひやり抜きましょう。例題と演習題がありますが、他の科目とのバランスがとれるようなら演習題もやりましょう。 (2) ①「本質」「定石」のようなものを意識してみましょう。 たとえば、「二次関数のグラフとx軸の交点は、二次方程式の解」「確率はすべてのものを区別する」「図を描いて考えてみる」「二次関数に帰着する」「〇〇=tと置いたら変域を考える」などです。これは、基礎的な段階でも意識してほしいし、その先の段階(旧帝の入試問題など)でもずっと意識すべきことです。こういう基本的なところで大きく差がついてしまいます。 ②上に挙げたもの“だけ”をやってると、飽きます。そしてつまらなくなります。そんなときは、入試問題や模試の過去問を解いてみましょう。オススメなのはセンター数学です!(共テじゃなくてセンター!) センター数学は基礎力を測るにはとてもいいものです。たまーにやってみましょう。時間も計りましょう。ここで注意点ですが、選択問題もありますが、時間測るときは選んでいいですが、その後選ばなかった問題も解きましょう!大きく意味があるものになります。 ③目的意識を持って勉強しましょう。「受かるため!」というものではなく、たとえばこの勉強であれば、 「苦手分野をつぶす」 「応用問題を考えるための引き出しを増やす」 「基礎を固める」 といったものです。 ④「引き出しを得る」ためのものですが、基礎的な問題、特に二次関数以降の分野においては、常に「考え」て解きましょう。①を意識するような感じです。 ⑤細かいことを意識しましょう。たとえば、 「分母に文字や式が出たら、分母が0にならないか確認する」 「〇〇=tとおいたとき、変域を書く」 「判別式は二次方程式にしか使えない(2次の係数が文字のとき、(文字)=0のときを確認しているか)」 などです。今の段階から意識しましょう。こういう細かな点が、入試や模試の採点の大事な要素となっていますし、数学を「考える」大事な要素です。 (3) ここまでやれば、進研模試でいえば偏差値70〜75まではいきます。旧帝大のやや易〜標準レベルの問題を、時間はかかるけど解けるようになります。一橋志望ということでもっと高いレベルを目指してほしいですが、焦らず、まずは基礎を固めることです。地に足つけて、ぜひ頑張ってください。
京都大学教育学部 くま
9
2
不安
不安カテゴリの画像
数学の勉強法
はじめまして!東京大学理科一類の者です。 数学に悩んでいると言うことなので、数学の勉強方法をご紹介させてください! まず基礎的な話として、各項目の公式、定理を洗い出してみてください。次には、その公式や定理の証明や導出が行えるのかと言うことを考えてみてください。証明や導出は教科書やネットにのっていますので、確認したい場合は使用してください。公式や定理の証明や導出を行えるようにすることで、どの定理と定理が密接に関係しているのかやその式の本質的な意味が理解できるようになるはずです。 例えばですが、余弦定理の証明をしようとしたときに、三平方の定理を使用することになると思います。ではその三平方の定理を証明できるか?と言った具合に、どの定理にどの定理が絡んでいるかを確認することができます。また定義と定理の違いを再認識できるはずです。(結構重要) 次に問題集の使用方法ですが初見の問題を解いた後、自力で解くことのできた問題も含めて、解答で使用している計算操作に対して、「なぜその操作を選択したのか(どんな結果をみたい・得たいからその操作をしたのか)」という根拠を持っておくことが大切です。 この訓練を常時意識して取り組むことで、難問にぶつかったとしても闇雲に手を動かすのではなく、最速で私的にその問題を切り崩していくことが可能になるはずです。 どのような難問でも基本的には、基本問題の絡み合いなので、「どの基本問題が組み合わさってこの問題は構成されているのだろう?」ということを意識するのがいいかと思われます! 参考書の復習の際は、すべての問題を再度手を動かして解く必要はありません。再度手を動かして解く必要があるのは、その問題を読んである程度の時間が経っても解法が浮かばない場合です。この場合の解法とは、計算のことではなく先ほど述べた基本問題への分解ができるかという意味です。 解法が浮かんだ場合は、実際に解答と照らし合わせてみる程度で大丈夫だと思います。 以上が私のおすすめの数学の勉強法になります。 以前解けるようになったはずの問題が時間が経てば解けなくなっているとのことだったので、本質的な理解につながるような勉強方法をご紹介しました。 是非参考にしてください!
東京大学理科一類 ryu031ki
26
12
文系数学
文系数学カテゴリの画像
高1、数学の勉強法
勉強お疲れ様です。数学の勉強法ですね。 まず、参考書を最初から最後まで全部やろう、という考え方を捨てましょう。数学が苦手だとしても、すでに理解している箇所、分野はあると思います。そこを何度も繰り返したってできることを繰り返しているだけなので時間の無駄です。勉強する際は、今までの模試・定期テストなどから自分の苦手分野を把握し、そこを重点的に攻めるようにしましょう。また、解いていて間違えた問題は、解答を丸写ししてやった気になるのではなく、その解答の根拠まで理解するようにしましょう。 Ⅰをもう一度やるかAに行くか、とのことですが、Ⅰをやって理解したのならAに行っていいのではないでしょうか。後に書きますが、Aも終わった後に模試などを解いてみて、まだⅠにも理解が足りない箇所があるなと思ったら、その分野だけもう一度やり直せばいいと思います。 次に、数学を勉強する際には公式というものが必ず出てきますが、公式は丸暗記するのではなく、何故そのような公式になるのか、という根本まで理解して勉強するようなしましょう。そうしないと色々な問題に応用できません。 そして最後に、苦手分野の勉強が一通り終わったら、今まで受けた模試など何か自分の実力をはかれるものをもう一度解いてみて、自分の理解度を確かめましょう。勉強後に解いたのに模試が解けない、という分野があったら、そこがまだ理解が深まっていない分野なので、そこだけもう一度やり直せばいいと思います。 以上です。参考にしてみてください。
慶應義塾大学経済学部 a.y
3
0
理系数学
理系数学カテゴリの画像
数学が苦手すぎる高一
数学に関してはどのような勉強をされていますか? 正しい勉強方法で勉強すれば数学は必ず苦手ではなくなります。(得意科目まで持っていくのは難しいですが) 数学を勉強する上でまずは公式を正確に暗記しましょう。社会等に比べれば暗記する量はたかがしれてるので頑張ってください。 次に覚えた公式を実際に使ってみましょう。これは教科書の例題や演習問題で大丈夫です。 ここまでは学校の授業内で行うのがベストですね。 次にすべきことは基本的な問題の解法を暗記してしまうことです。数学で暗記?と思われるかもしれませんが基本的な問題の解き方に関しては自分で考えるのではなく頭に入った上で応用問題の解き方を考えるものです。基本問題の解法を暗記していない人は最初から解き方を考える必要があるため、ここで苦手になる人が多いように感じました。 そのためチャート式であったりフォーカスシリーズ等の網羅系参考書をまずは完璧に解法暗記してしまいます。 もちろん解法暗記の前に解法の理解をしてくださいね。 ここまできちんとできれば数学は苦手ではなくなっていると思います。基本的な問題(共通テストレベル) の問題に関しては時間さえあれば全て解けると断言します。 ここから得意に持っていくためには応用問題が解けるようになる必要がありますが、苦手を克服したいとの主旨からは外れるためここでは控えさせていただきます。 まずは上記を参考に勉強してみてはいかがでしょうか?定期テストのレベルがどれほどかは存じ上げませんが今よりは確実に点数が上がると思います。
大阪大学工学部 T.T
19
4
理系数学
理系数学カテゴリの画像
苦手な数学を克服したい……
はじめまして。私も昔数学がとても苦手で、模試でも足を引っ張っていました。そんな私でも共通テスト数1A、2Bともに9割を超えることができた勉強法なので、かなりおすすめです。 まず、数学が苦手だという意識を変えるために基礎を完璧にします。 具体的にはフォーステップのアッサリスク付きの問題を(習っている範囲で大丈夫ですが)全て解きます。問題を解いた後は丸つけと解説(学校で解答が配られている場合)を読み、間違えた問題に印をつけます。この時、答えは合っているけれど解法が寄り道しているものもチェックしておくことがおすすめです。一通り終わったあとはこれを何度も繰り返します。繰り返すうちに自然と数学の問題の傾向が頭に叩き込まれ、多少問題の形が違うものにも立ち向かうことができるようになっています。 大体の問題が解けるようになったら(大体3週)、青チャートをまた同じ方法で解き進めていきましょう。青チャートはフォーステップよりも解説が詳しいので、解説を必ず読むように心がけてください。 青チャートのほとんどの問題を自分で解けるようになったら、次の参考書に移ってください。高校の先生におすすめを聞いてみるのが良いと思います。私は河合塾の文系数学の赤をやっていました。 また、これは質問と趣旨がズレますが、あくまで志望校に受かることだけを目標とするのなら、志望校の入試方式がどのようなものなのか(推薦、一般はどのような科目がどのような比重で見られるのか)を意識して勉強計画に反映することが大切です。 はっきり言って私は高1の時勉強なんて二の次だったので、きっと今から受験を意識している質問主さんなら、受験も大丈夫だと思います。大変だと思いますが、頑張ってください。
名古屋大学法学部 竹下那奈
3
0
文系数学
文系数学カテゴリの画像
数学の基礎はどの参考書でかためるべきか
計画としてはそれで良いと思います。 すべての科目に置いて、学習は基礎から発展へと段階を踏むのが基本です。 質問者さんの計画はこの基本原則に則っており、 無駄も少なく十分実現可能でしょう。 例えば1日10題ずつ進めていけば、問題精講1冊がおよそ1ヶ月で終わりますので、 時間的にも十分です。 質問者さんの数学の理解度にもよりますが、 入門問題精講は解説が充実している分、 問題数は少なめで、難易度もかなり低いです。 基礎的な部分がわかっているのであれば、 基礎問題精講から入っても良いのではないでしょうか? そこまで問題のレベルも高くありませんし。 もちろん、基礎問題精講が解けない!となれば入門から始めるのが良いでしょう。 (すでに問題集を手にとって入門からやらねば!となっているのであればすみません。) チャートか問題精講かということですが、 これは質問者さんがどのような学習を望んでいるのかによります。 チャート系列は問題数が多く、演習を積みたいという方には非常に有用です。 ただし解説は蛋白で、全くの初心者がスラスラ進めることは難しいです。 一方問題精講はその名の通り厳選された問題のみを掲載しているので、 解法のパターンは大体つかめますが、演習量は確保できません。 解説は非常に豊かでわかりやすいと思います。 基礎を素早く固めたいならば問題精講、 演習量を増やし、基礎を盤石なものにしたいならチャートを選ぶのが良いでしょう。 質問者さんはなるべく早く基礎を固めたいということですので、 問題精講を使う計画が適切かと思います。 ーーー ここからは得点戦略の話になります。 本来の質問内容とは少しずれるので読み飛ばしても構いません。 数学が苦手ということですが、どれほど苦手なのでしょうか。 学校の内容についていけない、またはギリギリついて行っている、 というレベルなのであれば、数学を得点源にすることは難しいです。 質問者さんはなぜ数学を得点源にしたいのでしょうか? 理系だからといって数学を得意になる必要はありません。 実際私も上でいろいろ偉そうなことを言っていますが、 数学が得意というわけでもなく、本番では半分も取れませんでした。 苦手教科で大切なのは高得点を取ることではなく、 点数の底割れを避けることです。 その分得意教科を伸ばしてカバーするほうがよっぽど簡単だからです。 もう一度、自分の得意不得意を見直して、 どの教科で何点取るのか、戦略を立てるのが良いと思います。 ーーー 以上、参考になれば幸いです。 高2の時点から基礎の重要性をよく理解できているのは素晴らしいことです。 これからもがんばってください!
東京大学理科一類 さら
3
2
理系数学
理系数学カテゴリの画像
文系数学で高2のうちにやっておくべきこと
私も青チャートを使っていました! 基本的に、高2だろうと高3だろうと勉強法は変わりません。 青チャートが解ければ、他の問題は怖くありません。 以下、勉強の極意です。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
127
10
文系数学
文系数学カテゴリの画像
数学が本当にできない、
私もかつては補習常連組レベルの数弱でしたが、浪人の末冠偏差値70まで行けたので何をやったかを共有しようと思います。 個人的に、文系の受験数学が得意になるまでには2ステップあると思っています。1つ目が解法をストックし、それが完璧に使いこなせるようになるまでの段階、2つ目が未知の問題に対して適切な解法が選べるようになる段階。もちろん前提として定義などは理解しておく必要があります。高1の進研模試だとおそらく解法選択の余地などは無く、一つ目のステップなので網羅系の参考書(青チャートなど)を完璧にするのが対策にはなります。 参考書を解く際には「操作の意味、目的を考える」ことを意識してほしいです。 私が高1で数学に行き詰っていた原因は、操作を覚えることに終始していたからだと感じています。もちろん公式や関数の性質は必ず覚えなければいけませんが、全てではありません。なぜこの操作をするのか?を理詰めで考えていくと、そうしなければならない理由が見えてくるはずです(例えば二次関数の場合分けなど)。これを徹底すると「初見の問題にぶつかった時、何をしていいかわからない」状態から抜け出せるはずです。逆に理詰めで見えてこない部分は覚えましょう。この方法でチャートを一周すればだいぶ変わるはずです。 加えて模試の復習も行うことが望ましいです。例えば進研模試は(1)は公式の確認や代入するだけなど簡単な操作が多いので、まずは(1)で落としているものが無いか確認しましょう。そこで落としている場合は公式の理解や記憶が甘い可能性が高いです。(2)以降の問題で不正解もしくは無回答(何していいか分からず白紙の場合もあるかと思います)ならば、解答をみてなぜその発想に至らなかったか、どうすればその発想に至ることができそうか考えると穴がふさがるのではないかと思います。
一橋大学法学部 とこ森
3
1
文系数学
文系数学カテゴリの画像
理系になりたい
初めまして。rockyyyと申します。 数学の勉強法についてお答えします。 結論から言うと、数学は問題の解法を自分の中で完璧に理解して落とし込むという勉強法が良いのではないのかと思います。 それでは、数学は暗記科目なのか?と思われるかもしれません。しかし僕は、以前別の受験生さんにもお答えしましたが、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そしてそのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学を解くときは、その問題に対してただ決められた解法を思い出して書き出すという訳ではありません。数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今まだ高1であられるので、今からしっかり勉強していれば、必ず大丈夫です。物理化学などの勉強法についても僕は他にも投稿させてもらっているので、よければ参考にしてください!受験応援しています!
大阪大学工学部 rockyyy
3
2
理系数学
理系数学カテゴリの画像
数学ができない
こんにちは 僕自身は高1〜2のうちはなんとなく感覚で数学を解いており、範囲の狭い定期テストや基礎中心の間はなんとかなったのですが、高3になって演習や応用を始めてから、数学が周りよりできなくなってしまいました。 ですので、数学ができる人ではなくできない人からのアドバイスだと思ってください。 もちろん周りの数学のできる友人を見ていて気付いたこともお伝えしますが、数学できる人のアドバイスを求めていた場合はお役に立てないかもしれません。 申し訳ありません。 まず、数学のインプットの仕方ですが、これは質の高い例題を解いてその解説を読んだり受けたりして、さらにそれを復習して自分のものにするというのが良い形かなと思います。 質の高い例題というのは、参考書でも学校の授業でも塾などなんでも良いですが、各分野の典型的な問題をさしています。 これをまずは自力で解くのが大切です。 難しい問題は手も足も出ないかもしれませんが、自分の思考回路を知ることでインプットしやすくなると思います。 自分に何が足りないのか、逆にどこまでは理解しているのかをまずは知りましょう。 次に解説ですが、これに関しても参考書を読んでも他の人や先生にお願いしても良いですが、問題の解答ではなく、どういう思考でその解答に至ったかを特に見てください。 数学は暗記科目ではないと言われますが、ある程度定石があってそれを問題に当てはめ応用していくものなのかなと個人的には思っています。 その定石を解説を通じて自分でおさえてください。 僕は数学が苦手だったので定石を覚えてしまって、これは◯◯の問題だから◯通りの解法があって、今回はこれかな?というふうに解いていました。 もちろん、本来は例題の類題や同じ分野の問題をこなすことで定石を身につけると良いと思います。 高2のうちは特にいわゆる問題集をやったほうが良いです。 僕が数学が苦手だったのは高2までで全然問題集をやらず例題だけやっていたからでした。 例題と似た典型問題は解けるので、定期テストや簡単な模試は解けるのですが、高3になり実際の入試問題やちょっと捻った問題を解くとダメという感じでした。 そのため、高2のうちになるべく多く問題に触れておくと良いと思います。 高3になると余計に他の教科に力を入れなくてはいけなくなると思います。 そのためにもなるべく高2のうちに英数は完成させておきたいところです。 もちろん数学が苦手でしたら高3でもある程度力をいれる必要がありますが、たくさん問題を解けるのは高2までかなと思います。 少し話がそれましたが、問題集などの問題を解くときについて書きます。 問題を多くやる理由は見たことある問題を増やすという意味と定石をどう運用するかを身につけるという意味があります。 見たことある問題が増えれば、初見の問題に対してあの時の解法を試してみよう!と思える機会が増えるでしょう。 また、問題演習をこなす中でインプットした定石を自分のものにできると良いと思います。 次に、苦手意識に関して。 これについては成功体験を積むのが一番かなと思います。 といってもなかなか難しいですよね。 僕が問題演習をサボっていたのはどうせ解けないだろという気持ちがあったからでした。 でも今思えば、数学が苦手なのだから一周目でできるなんて思ったのがだめでした。 結局入試で解ければ良いのだから一周目で解けなくても、二周三周してでも自力で解き切れば良かったとお思います。 そうすれば自分の力にもなるし、何より解ける問題が多くなれば数学への苦手意識も改善したと思います。 中々すぐには数学への気持ちは変わらないと思いますが、好きこそものの上手なれ、ということでやっぱり数学を好きになるのが成績upの近道だと思います。 理科社会のように暗記した知識ベースではなく、定石という武器をどう使うのかという思考力が試される数学は、難しいですがそこが面白みなのではないでしょうか。(数学苦手だった僕がいうのも変ですが) 中々短期で成績upは難しいかもしれません。。 でもやっていけば必ず伸びる科目ではあります。 ぜひ腐らずに続けていってもらえたらと思います。 緊張で他の教科に影響してしまうことに関しては、もう少し自分に(というか数学に)甘くても良いかなと思います。 数学は苦手なんだからと割り切って、他の科目よりは緩いペースで実力をげていけば良いのではないでしょうか。 高3になってもそうだと思いますが、自分のたてた計画というのは中々完璧には遂行されないものです。 特に苦手科目は後回しにしたり、他教科よりも計画と違ったりすると思います。 もちろん自分を律するのも大切ですが、それで思い詰めてしまうのは他教科にとっても悪影響です。 数学に関してはある程度ゆるい計画を立て、むしろ息抜き的に他教科をやっても良いかもしれません。 めちゃくちゃ長文になってしまいましたが、参考になったら嬉しいです。 また分からないことや疑問点あれば気軽にコメント・質問してください。 では。
北海道大学医学部 たくと
11
5
文系数学
文系数学カテゴリの画像