UniLink WebToAppバナー画像

数学が出来るようになるには?

クリップ(7) コメント(1)
4/21 23:10
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

りくそん

高3 石川県 大阪市立大学文学部(60)志望

今まで数学の答えを暗記するだけの勉強しかしてなかったので、正しい勉強法を教えていただきたいです。じっくり考えてとくべきなのか、分からなかったらすぐ答えを見るべきなのでしょうか?

回答

回答者のプロフィール画像

水面

北海道大学医学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
分からなかったら答えを見てOKです。 私は「自分で解いてみる→つまづいたら答えを見る→見ながら解いてみる→しばらくしてからもう一度解いてみる」というやり方をしていました。使っていたのはIAは青チャート、ⅡBは黄色チャートです。過去問などをやる場合は、少し時間をかけても解けない問題があれば、制限時間を無視して早くに切り上げ、解き直しに移りました。 私は理系ですが、受験で使ったのは文系数学でした。二次試験直前に数日このやり方で数列の勉強をしたところ、数列だけは完答することができました。元々数学が苦手で後回しにしていたところもあったので、もっと早くやれば良かったと思いました。 数学は本当にやればやるだけ伸びます。いろいろな問題を解くことで、それまでは思いつかなかったような解法が頭に浮かぶようになります。また、全ての単元に触れることも重要です。私は試験本番、数列の問題を解く際に数日前に解いていた確率の問題の解法が役に立ちました。 どれだけ問題を効率よく多くこなせるか、これができたらチャートだけでも十分です。余裕があれば1対1なども見てみるといいかもしれません。 がんばってください。応援しています。
回答者のプロフィール画像

水面

北海道大学医学部

1
ファン
8
平均クリップ
0
平均評価
メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

りくそんのプロフィール画像
りくそん
4/24 6:42
回答ありがとうございます! 僕も課題として文系の数学が出されているので、丁寧にこなしていきたいと思います。

よく一緒に読まれている人気の回答

理系数学の勉強法
こんにちは。rockyyyと申します。 数学の勉強法について僕が思うことをこれから紹介するので、よかったら参考にしてください! まず、数学の勉強をしていて、わからない問題が出てくると思います。その時、「あーわからないから、すぐ答え見た方が効率いいし、そうしよ」と思ってはいけないと個人的には思います。なぜかというとそれでは「自分の持っている知識で、問題を解く」という練習ができないからです。試験というのは、自分が勉強で解いた事がある問題と全く同じ問題が出るわけではありません。なので、数学を得意になるには「未知の問題に対しても、自分が培ってきた知識を使って解けるようになる」という能力が必要です。それは、自分で考えて問題を解こうとする姿勢がないと身につかないと個人的には思います。なので、数学の問題を解いているときに、わからなかったらすぐ答えを見るのではなく、最低でも10分くらいは自分の今持っている知識を使って試行錯誤することが大事ではないかなと思います。 ただ、注意して欲しいのは、別に解説を読むことは全然間違っていません。自分が自分なりにその問題に対してやれることはやってから、解説を読むようにしましょう。そうすると、解説の内容やその意味合いについての理解も深まると思います。「あ、自分はこうやったけど、解説のようにやるともっと効率がいいな」とか「自分がやった方法は、こう言った理由で間違っていたのか」という事がわかりやすくなります。そのためにも一回自分がわからない問題も自分なりに試行錯誤する事が大事だと思います。 また、自分が解説を読んだ後に新しく知ったことや、なるほど!と思ったことは必ず自分の言葉で書き残しておくようにしましょう。これはとても大事です。 以上のことを考えて、数学の勉強法を変えてみてください!きっと成績は伸びると思います。 次に、これからの数学の勉強スケジュールについてですが、僕は全部の分野をやる必要はないと思います。模試の結果からわかっている自分の苦手分野を重点的にやると良いと思います。もし自分の苦手分野があまりわからなかったら、数学の問題集の基礎問題を解いてみましょう。その分野のすべての問題をやる必要はないです。基礎問題があまりにも解けなかったら、その分野についての理解が足りていないということなので、そこはまた重点的に勉強すれば良いと思います。 以上になります。最後にもう1つお伝えしたいことが、数学は暗記科目ではないということです。解法を丸暗記しても問題が解けるようにはなりません。解説を読んで、「なぜそうなるのか」「なぜこのような解き方をしているのか」「なぜ自分の解き方ではダメなのか」ということを学ぶ事が大切です。数学が苦手な人は大抵が丸暗記をしようとしている人なので、一応お伝えしておきました。勉強法を変えれば、しっかり知識も定着して、数学が解けるようになると思います!受験応援しています!
大阪大学工学部 rockyyy
9
2
理系数学
理系数学カテゴリの画像
数学の効率的な勉強方法
問題を理解したら、 繰り返し解くのが、なんやかんやで1番早いと思います。 自分は、高2の1〜3月は数学にめちゃめちゃ重き置いてたんですが、その時は、 一回間違えたものは、その日のうちにもう一回。それで、次の日にももう一回。 それでできなかったら、次の日。 基本手には、こんだけやればできるようになります。 それでもできなかったら、とりあえず放置してました。 んで、ただやればいいだけじゃなくて、その問題の 「キモ」となるところを常に意識してください。これをしないといくら解いても、身につきません。 問題の「キモ」は、青チャで、〈CHART〉みたいに書かれてるところです。 また、初見の問題で難しい問題に出て来た時の対処の話をすると、 まずは、最初から解いていって、解けるとこまで解きます。行き詰まったら、今度は後ろの方を考えます。 「この問題では、これを求められてるから、最後はこの形に持ってきたいな〜」って考えるんです。 そして、 「じゃあ、この値が欲しいから、こうすればいいんじゃないか?」 みたいに、パズルを埋める感覚で解いていきます。 自分は、前からと後ろからで挟み込んでいくこのやり方を、「サンドウィッチ作戦」って呼んでました。 これができるようになると、初見の問題の正解率もグンと上がります。 自分は、高3の時には、人よりも数学に時間割かなかったんですが、一橋本番では、2完しました。ほかの部分点とかも考えて、周りの友達と比べると、数学は結構できてたみたいです。 理由としては、高2の時にあらかた数学にケリをつけてたのと、このサンドウィッチ作戦で、初見の問題にも自分の持つ知識をうまく使って解いてだからだと思います。 夏休みは、長いです。今からでも十分基礎を固められます。 基礎をしっかり固めて、9月からの過去問演習で、応用力をつけてけば、間に合うと思いますよ。 頑張ってください!
慶應義塾大学商学部 タイ
20
3
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
237
34
理系数学
理系数学カテゴリの画像
青チャートについて
全然悪くないと思いますよ! 数学は発想力も大事ですが、数をこなして知識として問題を頭に入れていくということも同じように重要になっていきます。 従ってどうしてもできなさそうな問題は早めに切り上げて解答法を理解しましょ、自分のものにして次から似たような問題は解けるようにすれば大丈夫です。 自分も同じような方法で数学を進めていたので、そこはまちがいないです! その他のオススメなのですが、数学、とくにセンター試験はですが、スピードが重要になってきます。なので、問題演習も大事ではあるのですが、計算演習も忘れずにやり、計算スピードを上げていきましょう! センター数学で10分も時間が余るレベルになれば完璧です。 まだ高2ということなので、時間はまだまだあると思うので頑張ってください!
東京工業大学第三類 nori
2
0
文系数学
文系数学カテゴリの画像
解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
65
6
文系数学
文系数学カテゴリの画像
数学の分からない問題の勉強方法
ほさかさんの質問に答える前に、少し遠回りをさせてください!! 私は数学の実力をつけるために ①解法暗記 ②複数の解法を組み合わせる、複数の解法から一つに絞る力をつける(数学的思考力をつける) ことが大切だと考えています。 ①では「すぐ答えを見ること」は正しいですが、②では逆に長考することが推奨されます。 手も足も出ない問題とは方針がまるっきり立たない問題だと推測します。 方針が立たない場合、そもそも解法を知らないパターンと、どの解法が使えるのかわからないパターンがあります。前者は①に、後者は②に対応します。 ① 解法暗記をすべき問題は青チャートの例題が特にそうですし、京大でもそうカテゴライズされるべき問題はあります。(京大理系2022大問3のユークリッドの互除法など) 例えば青チャートを終えたとしても、発展問題の演習の中で出てきた新しい解法を知識として蓄えることは重要なんです。 それと一応説明すると、解法暗記とはある問題のパターンに対してどのような解法が合致するのか覚えるということです。数学の性質を根拠に基づいて解法を覚えるべきことです。(部分的には高度な内容もあるで、初学〜中級者の方はパスしても構わない場合もあると思います) ② 目新しい条件が設定されていたりして、どんな解法が使えるかすらわからない時や、一見典型問題に見えていつも通りな解法が通じない時があります。そのような問題に対処するためにはとにかく時間をかけていろいろ試す他ありません。値を代入したり、より簡単な条件で考えてみるなどの実験から着想を得て既知の解法に帰着することや、別の分野から問題を考えてみる(たとえば、微積の問題だけど、ベクトル、三角関数、図形の性質の分野の解法を使う)ことなど色々試すパターンがあります。どんなパターンがあるかを多くの問題を解く中で経験していくことが重要です。 (=数学的思考力をつける、という意味で私は使います) ここからほさかさんの質問に答えます! ①解法暗記②数学的思考力をつける、の両方の面で多くの問題を解くことが一番大切になります。知識を網羅してさらに定着させるためです。 青チャートなどの網羅系参考書では回転率を上げてまさしく解法を網羅するのが良いと思います。多くの問題を解くことが一番の目標です(理解が二の次でいいということではありません)。この段階では、解法を知らないのだから、わからない問題は答えをすぐにみるべきです。 プラチカなどの演習問題の載っている参考書でも、多くの問題を解くことが目標となります。演習問題を解く理由は二つあり、一つは解法暗記の知識を定着させること、わからない問題に対し試すことのパターンを知ること、またそれを定着させることです。手も足も出ない問題に対処するパターンを知らない段階では手も足も出ない問題の答えはすぐ見るべきです。演習を繰り返すうちにいずれ手と足が出るようになります。そのときからいろいろ試すと解ける可能性が出てくるため、時間をかけて演習する価値が出ます。 ⒈網羅系参考書では答えをすぐに見て良い。 ⒉演習不足の段階では手も足も出ない問題の答えはすぐに見て良い。 ⒊演習して手と足が出てきたら難しい問題も時間をかけると良い。 受験を通して思った個人的な思想なので参考までにしてください!
名古屋大学経済学部 Na
15
7
理系数学
理系数学カテゴリの画像
勉強方法
もともと数学は好きで得意だと思っていましたがある時スランプに陥ってなかなか成績が上がらなくなった時がありました。ある分野が全く出来なかったので、その時の勉強法を話したいと思います。 まず、教科書をじっくりと読みました。簡単な例題も読んだあと自分で解きました。分からないところは友人や先生に何度も質問しました。ある程度基本的な事項が抑えられたと思ったら問題集の簡単な問題を完璧にして、少しずつ難しい問題に挑戦しました。でもここでも躓いてなかなか前に進むのに苦労しました…そんな時は間違えた要因を探しました。たとえばこの公式を正しく覚えられていなかったから出来なかった、この発想が出来なかった、などです。 私は数学を本番で武器にしたかったので、徹底的にやりました。苦手な分野も典型的な問題は必ず出来るようにしました。 ある程度問題のパターンを暗記してしまうのもいいと思います。本番でぱっと思いつくためにはいろんな問題を解いてみていろんな発想を知ることが必要だと思います。頑張ってください!
慶應義塾大学理工学部 sk__8
41
0
理系数学
理系数学カテゴリの画像
解法を身につけるには
なぜかの解法が思いつくのかということですよね。 いくつか方法を挙げるので、良いのがあれば実践してみて下さい。 ①誰かになぜこの解法になるのか質問 ②誰かに解かせてみて、思考の過程を盗む ③分からない問題に印だけつけて、他の問題集にいく。 特に問題集は思考の過程が詳しく載っているものがいいと思います。実際に本屋さんで見比べてみるといいけど、「入試問題の核心」とかオススメかな。時間が解決するとはよく言ったもので、戻ってきたらある程度理解しやすくなってるもんよ。 まぁ、数学の解法がパッと出てくるのはめっちゃ大事だけどあくまで武器を揃えてるだけ。ある程度武器揃えたら初見問題を解いて、実際に使ってみないと身になりませんよ。スポーツも練習ばっかじゃダメ、試合をしてみないと見えてこない世界がある。勉強も同じですよ! 数学のセンスがないと自覚があるなら、数学は暗記という言葉をあまり真に受け過ぎないように…
大阪大学工学部 atom
16
2
文系数学
文系数学カテゴリの画像
数学の記述力を上げたい!
イメージができないという部分について僕が的確な解釈が出来ているかどうかわかりませんが、数学の力の付け方は2パターンに分かれると考えます。 ①問題を見てどういう解き方かだけを考える。 ②時間を気にせずにとにかく満点になる解答を目指す。 です。前者はセンスがないと思っている(ここでいうセンスとは先天的なものではなく、確率や整数などで解き方のストックが多い人のことを指します)方におすすめです。わかる問題は解答できるが、手も足もでない問題が出ると何もかけないと該当されるならば①のタイプです。とにかく問題数に多く触れて自分の手持ちカードを増やしましょう。高3ということで時間もないかつ他の教科のこともありますので1問につき3分程度でどうやって書くか想定して答えを見る→あってたら飛ばす、間違っていたらその解き方を覚える。これを一橋数学で15年分くらいやればおそらく網羅できます。 ②についてはいつも部分点はとれるが完全な解答を書けないという方向けです。解き方のストックはある程度持っておられますので、最後の仕上げの部分にフォーカスしましょう。ここでは時間はさほど気にしなくて良いです。まずは解を導くことを優先しその後時間をはかりましょう。 以上が僕のおすすめする文系数学の力の付け方だと考えます。 ご不明な点やわからないところがございましたら聞いてください!
一橋大学社会学部 9と3/4
19
4
文系数学
文系数学カテゴリの画像
青チャート何周もしたのに解法を忘れるのはなぜか?
つるまるさん、こんにちは〜☺️ 確かに、やってもやっても身につかないことってありますよね。私も、模試などの時に、「これ絶対やった問題なのに〜。なんで分からないんだー。」と自分を殴りたくなる経験を何度もしてきました。そんな私が悩んだ末に編み出した。解法暗記方法をお教えしたいと思います。 ✅行き当たりばったりの解答を止める 解答を作成するときに、最後まで解答が思い浮かんでいないうちに書き進めてしまっていませんか? もちろん、模試の時や入試本番でどうしても点数が取りたい時にはとりあえず書き進めるという方法を取ることも全然アリです。 しかし、練習の時はそれではいけません。特に解法を定着させたい時には、方針を立ててから解くようにしましょう。 ではなぜこのようにするといいのでしょうか。 行き当たりばったりで解くと、自分がなぜその思考に至ったのか分からなくなってしまいます。自分の思考の理由がわかると足がかりが増えます。 ✅多くの解答に共通する考え方を探す 数学には多くの問題に使える考え方がたくさんあります。 たとえば… 2変数だったら一文字固定しよう 整数問題は因数分解、剰余類に分ける、範囲を絞る ベクトルは基本ベクトルだけで表す 軌跡は軌跡上の点を(x,y)で置く など最初の一手が決まっている問題は多いです。 このような共通する考え方をたくさん知っていると解法に辿り着きやすくなります。 ✅最後から考えよう これは方針を考えるコツです。 最終的に何をしたいのかを確認しましょう。特に指数対数の範囲では式の変形に注目しすぎて最終的に何をしたいのか分からなくなりがちです。 ですから、最後から逆算してゴールから考えてみるというのも解法にたどり着くための鍵になると思います。 ✅大量の問題を解こう やはり、これが単純かつ確実かつ最強です。大量の問題を解くことによって、解答の中の当たり前の部分が増えます。すると、一瞬で頭の中で解答の最後の方まで辿り着けます。 さらには初見の問題を見ても頭の中で類似問題を検索して知っている問題として解く事ができ流ようになります。 どうでしたか?文系の方にとっては数学は難敵ですよね。数学の問題を解く1番のコツは必ず解けると思うこと。解けないかもしれないと思いながらだと解けません。自信が実力を上げ、実力が自信を上げるのです。
東京大学理科一類 しゅうへい
23
7
文系数学
文系数学カテゴリの画像