UniLink WebToAppバナー画像

複素数なのですが!!!!!

クリップ(2) コメント(0)
9/15 13:25
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

haruharugd

高卒 新潟県

問題解いてる時に、あれ、こんな式変形していいっけ?って時があったり、なんでこれで極形式使おうと思うの?ってなる時があるのですが慣れですか???複素数において大切なこと教えてください

回答

kaoshun

慶応義塾大理工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
問題が解けるようになるになるには、ズバリ慣れです。 数学は経験を重ねる他ないです。 複素数は特に、自然界にはこれっぽっちも存在しない分野です(数学そのものがそうですが)。 人間が考えたものなので、極形式なども人間が扱いやすいように作られています。 算数は野生動物ですが、数学は家畜みたいなものです。 なので、「ここをこうするのはOKなのかNGなのか」 というのは、その都度確認しながら覚えていくしかないです。 しかし、複素数の問題のパターンは限られているので、ある程度経験を積めば得点源にはなりますよ。

kaoshun

慶応義塾大理工学部

110
ファン
16.1
平均クリップ
4.2
平均評価

プロフィール

在学 慶應義塾大学 理工学部 学門4 合格 早稲田大学 基幹理工学部 学系2 東京理科大学 工学部 建築科 東京理科大学 工学部 機械工学科 明治大学 理工学部 機械工学科(セン利) 芝浦工業大学 工学部 機械工学科 センター:英語 186/英リス 46/数1A 92/数2B 80/物理100/化学 100

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

数学の解法を思い付くためには
受験数学の問題は解法がすぐわかるものと分からないものの2択です。それは大体分野によってまちまちですが、僕の場合、整数、確率、複素数平面、以外は解放暗記で押し通しました。 そして、整数、確率はとにかく思考力をつけるために長い間考えるようにしました。なるべく答えをみない。 僕の出した結論 確率は図を書きながら問題把握して、漸化式を立てるか立てないかの2択。漸化式は全て解放暗記ゲーで、立てない場合は、全て数え上げる系か、独立の事象で積の法則の考え系の2択。 整数は、マスターオブ整数をやって、背景を何となく知りながら、問題を解く際には具体値でとにかく実験。50個くらい書き出してみる面倒さにも打ち勝つこと! 複素数平面は、実数に逃げる、極形式、図形処理する、複素のままいくの4通りのどれか。 その他の分野の個別問題で解放が思いつかない場合は、優秀な友達もしくは先生に思考プロセスを聞いてみると良いですよ。
東北大学経済学部 タタ72
16
2
理系数学
理系数学カテゴリの画像
形式的に覚えてしまう
数学と化学に関しては私も現役の時は心当たりがあります。特に数学はセンス的な要素が強いと思っていたので、解ける解けないの差が激しかったです。 さて、少しひねった問題が来ると解けないのが悩みということですが、まず、最低限の勉強ができていることが大事です。おそらくそこらへんはテスト期間で補っているので大丈夫かと思います。 その中で同じような問題で少しひねっている問題というのはどうすればいいかわからないと思うかもしれませんが、解き方としてはひねる前の解き方と同じようなのに気づくことはできているでしょうか?そのような問題の模範解答をじっくり吟味しているでしょうか?その時解けなかった問題はしょうがないですが、そのあとのフィードバックが大事です。そして、この解法やったことがあるなと感じることが大切です。 具体的に述べるのは難しいですが、例えば二次方程式の2解が正の値をとるための条件は f(0)>0 軸>0 判別式≧0 で必要十分ですよね。これは大丈夫でしょうか? これの少しひねった問題が例えば二次方程式の解が0<x<1の範囲で持つ条件はどうでしょうか? これは場合分けが必要ですが、そのうち2解がともに0<x<1の範囲の時はどのような条件かというと f(0)>0 f(1)>0 0<軸<1 判別式≧0 で必要十分です。これと先ほどの上の条件と比較すると同じような感じですよね?つまり端点のみに具体的な数字の条件があるときにこのような条件で進めていくのがセオリーです。 上の解法を知識ゼロから解けと言われたら厳しいものがあるかと思いますが、一通り通っていることなら問題を見たときに「あっ、この問題はこの解法かな?」と瞬時に判断できるはずです。その感覚が大事です。「あー、これどうすればいいんだっけ…?」みたいな感じになっているのは良くないです。 これは勉強する時は問題を解き始める前に一瞬立ち止まって考えください。これを意識するしないとでは雲泥の差です。これは私自身、現役の時には気づかなかったことですが、浪人してからはこのことを意識するだけで、解ける問題のレパートリーが増えました。 闇雲にただ問題をこなすだけなら、むしろその場しのぎになってしまいます。それなら、数学の問題とかは時間がないのなら問題をみてこのような解法でいけばいいかなと思えるなら解かなくていいです。 要は、解き方に“意識“して問題演習を行ってください。時間のかける方はこっちの方です。 模試の前とかは、全国模試であれば定期テストなどでできなかった問題の教科書レベルの類題を確認する感じでいいと思います。高校生は部活等で時間がないと思われますので。
慶應義塾大学理工学部 シュンペーター
21
0
理系数学
理系数学カテゴリの画像
複素数平面が絶望的
こんにちは、さかさかです。 複素数って最初はなかなかとっつきにくいですよね。 ただ意外と問題のパターンは限られたものしか無いので、複素数の問題は特に解法の暗記が有効かなと思います! 例えば質問文中にあったような同一円上、直線、などというキーワードが出てきたら、複素数ではこう表現できる、というようなものが決まっています。表現の仕方が一通りだけでなく2通りある場合もありますが、それらさえ覚えてしまえばそこまで難しくは無い分野だと思います。 なので青チャートなんかの参考書でとりあえず基礎的な解法を丸暗記してしまうのがオススメです! 参考になれば幸いです☺️ 複素数の分野は一度解法をしっかり覚えると逆に点数を落とさなくなるので、頑張ってください!
京都大学工学部 さかさか
5
3
理系数学
理系数学カテゴリの画像
標準、発展問題の解き方
普遍的なことだけを説明しても中々伝わりづらいと思うので、具体的に問題を1問出しながら説明させてください! まず前提として、応用の問題が解けるようになるためには以下のことが必要になります。(結論です) ・基本的な解法がすぐに出てくるようにする ・問題を見た時、前の問題との関連性から考えていく ・誘導に乗っていくのに慣れるのにはとにかく演習量が必要 1つ目は恐らく大丈夫だと思います。また、3つ目もこれから2次試験向けの演習を重ねるうちに「あの時の誘導に似てるなー」というような感覚で段々できるようになってくるものです。つまりは慣れです。自分自身もこれを強く感じています。最初は中々誘導に乗れず辛いかもしれませんが、まずは量をこなしましょう。 おそらく問題は2つ目です。 これは分かりやすく言うと、「こうやってやっていって…あ、(1)(2)ここで使う?」という考え方ではなく、「(1)や(2)の問題の考え方を上手く使えないかな〜」「今までやったことのある基本問題の考え方が何か使えないかな〜、あ、文章のこの部分前にやったあの問題文と似てるな〜」と言ったような、初めから誘導や基本問題などのヒントの方から答えを探っていくように考えていくことです(長くてごめんなさい)。 実際に問題を見て考えていきましょう!以下は2015年の九大の問題です。 以下の問いに答えよ。 (1)nが正の偶数のとき、2^n-1は3の倍数であることを示せ。 (2)pを素数とし、kを0以上の整数とする。2^(p-1)-1=p^kを満たすp,kの組を全て求めよ。 (※^の後は指数を表します。2^n-1は2のn乗-1、2^(p-1)-1は2のp-1乗-1です) (1)は割愛しますが、n=2l(lは自然数)とかと置いて二項定理で分解して3で括ったり、帰納法を使えばいいと思います。とにかく2^n-1が3の倍数だと分かればいいです。 問題は(2)ですね。先程言った通り、誘導を上手く使えないかという点からとにかく問題を見ましょう! まず見るべき点は式の形が左辺と似ている所です。誘導が使えそうですよね。 誘導を上手く使うコツですが、「誘導の部分と問題文の該当部分の違いを上手く見分けること」です。今回であればnがp-1に変わっています。また、(1)でnは"正の偶数"でしたが、p-1は"素数-1"ですよね。 ここの違いは何かあるでしょうか?? まず整数問題で素数が出たら、「2とそれ以外」という見方をするのは演習量をこなせば分かってきます。素数の中でも2だけ偶数で稀有、と認識できていればOKです。(ここは基本問題的な解法暗記の部分) 素数-1は、素数が2のときだけ奇数、素数が2以外のときは偶数になりますよね! ですので、2か2じゃない素数かで分けます。2じゃない素数のときは(1)の条件と一致するので使えそうですよね。まずは使いましょう! ○pが2以外の素数のとき (1)より左辺は3の倍数です。ということは右辺も3の倍数になります。p^k、つまり素数の累乗が3の倍数ということはpは3以外ありえないですよね。ここは素数ならではです。 ですのでp=3から左辺に代入するとk=1と決まります。 ○pが2のとき 代入していくとk=0になりますね。 以上から(p,k)=(3,1),(2,0)となりました! このように、「基本問題の解法はすぐに出ておくようにする」「誘導から常に考えていく(誘導と問題文の違いを認識し、見分けていく)」ことの重要性がわかったと思います。また、基本問題というのは、教科書や青チャートにある典型問題もそうですが、素数は2とそれ以外に分ける、といったような"応用問題でよく出てくるテクニック"もそうです!これは演習量を詰まないと中々インプットされないので、「演習量が大切」なのも再認識できるでしょう。 また、1問に時間をかけて思考していくこともとても大切です!最終的にその標準問題の解き方を覚えられると役には立ちますが、思考力というのは思考する時間を取らないと中々伸びません。1問に10分は考える時間を取りましょう! めちゃくちゃ長くなって申し訳ないですが、参考になれば幸いです!!
九州大学経済学部 riku
10
3
理系数学
理系数学カテゴリの画像
数学の難問対策はどうすればいいのでしょうか?
僕も受験期に質問者さんと同様のことをよく思いました。しかし、本番でも解けない問題は必ず存在します。大事なのは、その解けない問題が客観的にどのような難易度であったかということです。皆ができないような問題ならば自分もできなくても構いませんが、皆が正答できる問題だとしたら合格は遠のきますよね。ですから、学習の上で大事なことは、他の受験生ができる基本問題や一番差が出る標準的な問題を確実にできるようにすることです。 次に、ご質問にある難問に出会った時ですが、10分ぐらい考えて解法が見出せない問題に出くわしたら、解説を見てしっかり解き方を理解するといいでしょう。様々な問題にあたって、これを繰り返すうちに、解けない問題が段々と減ってくると思います。数学は、経験を積むことが大事です。多くの入試問題はある程度のパターンというものがあります。たくさん演習経験を積むと、新たな問題に出くわしても、「あ、これは、あの時のあの問題と同じ考え方だな!」という風に解法の糸口を見つけ出すことが可能になります。 参考になれば幸いです。
北海道大学法学部 AO
19
0
文系数学
文系数学カテゴリの画像
数学の解法の身につけ方
数学には「解法の必然性」があります。つまりその解法をとるためには必ず理由があるわけです。 簡単な例で言うと、まず関数f(x)の実数解の個数を求める問題があったとします。f(x)が2次式なら判別式を使えばよいとすぐに分かると思います。次に2つの関数f(x)とg(x)が共有点をもつときの条件を求める問題があったとします。この問題の場合、単に関数f(x)とg(x)を連立して得られた関数が2次式なら判別式を使えばいいと暗記してしまっていると、すぐに忘れてしまいます。しかしなぜ判別式を使うのかを理解していれば忘れることは無くなります。つまり関数f(x)とg(x)が共有点を持つことが、関数f(x)とg(x)を連立する、すなわちそれは関数f(x)とg(x)の交点を表すわけですが、その交点が存在することと同値である。つまり関数f(x)とg(x)を連立して得られる関数が少なくとも1つ実数解を持つことと同値である。なので2次式であれば判別式を使って実数解を持つ条件を求めればよいと理解できるわけです。このように一見すれば1つ目の例と2つ目の例は異なる問題のようにみえて、判別式を使う点では同じなのです(便宜上2次式だと仮定してます)。 入試問題における数学ではこのような解法における普遍的なパターンが存在します。上の例はとても単純な例ですが、他にも図形問題を見たら、初等幾何で解くのか、ベクトルで解くのか、座標利用で解くのかをまずは決めるなど、普遍的な思考パターン、つまり「解法の必然性」があります。そうしたパターンを把握することで、多くの問題に対応できるようになるのです。上の例でも見たように、この2つの問題を全く違うものと捉えていては無数にある入試問題の数学には太刀打ちできません。2つは実数解を持つための条件という点で同じ問題だと捉えることで記憶することもずっと簡単になります。そうした「解法の必然性」は無限にある入試問題を有限にしてくれるわけです。なので「解法の必然性」を理解することが必要なのです。 ではその「解法の必然性」を身につけるにはどうすれば良いのか。それは解法に対して「なぜ?」を考えることです。なぜその解法をとるのかを常に考えることで、その思考パターン「解法の必然性」が見えてきます。恐らくですが質問者さんの場合、ある問題に対して解答をなぞるだけになってしまっているのではないでしょうか。なのでその日は覚えていても、数日経つと「なぜ」その解法を取るのかわからないために手が止まってしまうという事です。なので、今後は「なぜ」その解法を取るのか常に意識してみることが効果的な学習法だと考えます。 最後になりますが、どうしてもその「解法の必然性」つまり思考パターンというものがどういうものかわからない場合、「数学モンスター」という無料で数学の問題演習ができるサイトを見ていただければ理解の助けになるかと思います。1つの問題に対してその問題を解くための思考パターンを紹介してくれるというような解説になっています。しかしレベルはそこそこ高いので、本格的に取り組み始めるのはフォーカスゴールドであれば少なくともアスタリスク3のレベルまではできるようになってから取り組むことをおすすめします。下記にそのサイトのリンクを貼っておきます。 http://mathematics-monster.jp
大阪大学経済学部 RIZ
17
2
理系数学
理系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
36
8
文系数学
文系数学カテゴリの画像
11月の数学勉強方法
今は文系学部に通ってますが、もともとは理系だったので回答させていただきます。 一応、理系の頃から数学は得意でしたので、十分回答になりうると思います。 まず入試の数学が解ける、という段階に至るまで大きく3段階あると考えています。 1つ目が、公式を覚えているということです。これは大前提ですね。 2つ目が、各分野において定石と呼ばれる解き方を網羅しているということです。発展問題ができない、という人は大方この部分ができていないと思います。 3つ目が、問題をみてどの分野の問題か理解し、その場の最適な解法を見つけることができるということです。 上記の3段階ですが、大雑把な説明になっているのでもう少し詳細を説明します。 1つ目はまあ覚えてるとして、問題の2つ目ですね。これはどういうことかというと、例えば、数列を考えてみてください。このときに、数列の解法には等差数列、等比数列、階差数列、群数列、数学的帰納法、また漸化式の解法には一般型、特性方程式、n次式型、指数型、連立3項間、分子分母を逆にする、etcといったような解法があります。これを「漏れなく、だぶりなく」身につけて、覚えることが重要になります。このような解き方はその場で思いつくものではありません。逆にこれを漏れなく使えるようになっておけば、問題から解法へのアプローチだけでなく、解法のパターンを思い出していき、問題に当てはまるものを考えていくといったアプローチを取ることも可能になります。このことから単に問題集の解き方を覚えるだけでなく、その単元ごとの全体像を把握する勉強というのが大事になります。なので11月に数学を勉強するようなら、まず第1に入試頻出(特に名大であれば)の微積、確率漸化式、整数論といった単元を優先的にして、勉強するのが良いと思います。このとき、微積をやるなら微積を一気にやって全体を把握するのようにしましょう。focus goldなら各単元を網羅的にしているのでいい問題集です、ただやる問題は例題だけで十分だと思います。 11月中に3つ目に行くことは相当なペースでやらない限りないかと思いますが、今後の勉強法のためにも書いておきます。 3つ目は発展問題、いわゆる入試問題を見て、どの解法で解くかを身につける練習です。このとき先ほど言ったアプローチを身につけるとともに、わからなかった問題や、なんとなく解けた問題に出くわすこともあると思います。このとき解き方を覚えるだけでなく、その問題文をよく読み、その文章や書いてある数式からどんな解法を使うかを見つけられるようにします。例えば、数列の問題でnは自然数とする。と書いてあるとしましょう。この一言だけで数学的帰納法を使う可能性があがります。もちろん必ず使うわけではありませんが、解答の糸口になるかもしれません。このような勉強が重要になります。また自分がよくやった方法は、一度解いた後にその問題に自分なりの題名をつけ、一言でまとめるということです。そしてその一言を見れば解法が頭の中で浮かび上がってくるような名前をつけましょう。例えば、n=1,2を基にして解く数学的帰納法を用いた背理法の証明問題。と名付けたとしましょう。これだけで背理法で仮定をして、n=k,k 1を使った帰納法であることがわかります。これはあくまで自分の例ですが、こうすることで簡潔に頭の中で整理されます。 上記の勉強方法はあくまで自分の勉強方法なので、万人に当てはまるものではありません、しかし1つの例ではあるので参考にしてもらえれば幸いです。 本番までまだ4ヶ月もあり、十分逆転は可能です。最後まで頑張って第1志望の大学に合格されることを願っています。頑張ってください、応援しています。
京都大学経済学部 フランダー
47
2
理系数学
理系数学カテゴリの画像
数学の解き方
初めまして。rockyyyと申します。 数学についての勉強法についてお答えします。 結論から言うと、YNUさんの勉強法は間違ってはいません。何度も解き直して、解法を落とし込むという方法はとても重要です。しかし、時間がかかりすぎてしまうため、時間が惜しい受験期間においてはあまり望ましくないのかなと思いました。 僕は、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今から頑張っても全然遅くはありません。よければ僕の勉強法も参考にしてもらって頑張って欲しいです!応援していますよ!
大阪大学工学部 rockyyy
8
2
文系数学
文系数学カテゴリの画像
初見で解けるようになるには
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
九州大学経済学部 riku
13
5
過去問
過去問カテゴリの画像