UniLink WebToAppバナー画像

この問題教えて欲しいです!!!

クリップ(0) コメント(1)
12/3 21:17
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

優希

高1 神奈川県 弘前大学志望

一辺の長さが6の正四面体OABCがある。辺OA、OB、OC上に、それぞれ長さ点L、M、NをOL=3、ON=2、OM=4となるようにとる。この時、三角形LMNの面積を求めよ。 この問題教えてくださいお願いします。

回答

回答者のプロフィール画像

柿ピー

東北大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
こんにちは。 正四面体ということは、それぞれの角は60度になります。 このことと、問題文にあるような辺の長さを余弦定理に代入し、三角形LMNのそれぞれの長さを出せば面積が求められます。
回答者のプロフィール画像

柿ピー

東北大学工学部

21
ファン
6.1
平均クリップ
4.3
平均評価

プロフィール

塾には行ってませんでした。 メッセージは基本的に見ているので、受験の悩み相談等受け付けてます。

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

優希のプロフィール画像
優希
12/3 22:27
ありがとうございます!!

よく一緒に読まれている人気の回答

数学I(図形と計量)
回答させてもらいます! 見た感じ計算はあってそうですね! セナさんの疑問としては cosAの時はb=-√2+√6(b>0)が答えとして出るのに cosCの場合はb=√6±√2がb>0の条件でどちらも有効で、cosAの時と同じにならないのではないかという疑問だと思って回答しますね! この場合cosCで出てきたbの値に対して一つ有効な条件設定があります。それが「辺と角の関係」です。 もしかしたらこの時点でピンと来たかもしれませんが、角度が大きい角の対面の辺が長くなるよって感じのやつですね(言葉がラフでごめんなさい。回答に書くときはしっかり教科書通りのやつ書いてね笑) その関係性を角Cと角Bに当てはめてみると角度が小さい方の対面の辺bは辺cより小さい必要があります。 √6+√2と2√2の大小関係、√6-√2と2√2の大小関係はどういう風に考えるといいんでしたっけ? 一回考えてみてください🙆‍♂️(逆にいうとその考えがめんどくさくて回答はcosAを採用したのかもしれませんね…) また、他にも考え方があると思うのでこういう考え方もあるよ!ってのを思いついたら是非教えてくださいね🥸 頑張って!
東京工業大学物質理工学院 yuya
3
3
理系数学
理系数学カテゴリの画像
「数学を根本的に理解するとは」
数学を根本的に理解する。 という勉強方法は、言葉で説明すると少し難しいので、ほんの少しだけここでやっていみたいと思います。 例えば、弧度法の中で「ラジアン」というのが出てくると思います。これは、「2π = 360°」を基準に考えよう。という風に習ったと思います。このラジアンを使って、扇形の弧の長さを求める公式で、「L = rθ」というのがあります。 皆さんの中に、この式を覚えているだけになっていて、意味を理解していない方はおられるでしょうか? これは、小学校の時に習った、「円周の長さは2πr」というものを使っています。 どういうことかと言うと、「円を4分割した形である扇形のこの長さを求めよ。」という問題があった時、 小学校で習った式を使うと、求めるのは円周を4等分した長さなので、 ¼ × 2πr = ½πr ラジアンを使って解くと、中心角 90° は、ラジアンでは ½π なので、L = r × ½π = ½πr よって、答えはどちらの式を使っても、½πr になりました。 中学の知識では、L = 2r × π × 角度 / 360° 高校数学では、L = rθ どちらの公式でも求められますが、公式で見ると、弧度法を使った方が分かりやすいですよね。 という感じです。 公式をただ覚えるだけでなく、意味を理解しながら使えるようになる。ということが、根本的に理解するということになります。 先程の例で言うと、ラジアンというものはどういう意味を持つのか。ラジアンを使えるようになると、計算がどう変わるのか。というのを理解しておく必要があります。 これは、ほかの公式でも当てはまります。 例えば、加法定理の公式: sin(a+b) = sin(a)cos(b) + cos(a)sin(b) これを使って2倍角の公式を作ります。 sin2a = sin(a+a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) 例えば、等差数列の和の公式: S = ½n(a + l) (a:初項、l:末項、n:項数) これに、末項:l = a + (n - 1)d (d:交差) を代入すると、 S = ½n(2a + (n - 1)d) これが教科書に乗っている和の公式の2つになります。 こんなん知ってるよ。という方もいるかもしれません。ただ、これが数学を根本的に理解するということになります。 もう少し難しい話に行くと、 ・解の公式ってなんであの形なの? ・平方完成ってなんでするの? ・円の方程式の意味は? ・微分と積分の関係は? ・ベクトルって何? などなど…… キリがないので、この辺りにしておきますが、 要するに、公式の意味を理解することで、数学を本質的に理解しよう。という訳です。 しかも、これらは全てほとんどの教科書に載っています。理解しようと思うと、教科書を読めば大体のことが分かります。 数学を根本的に理解すると、問題を解くときに答え方がパッと思いつきやすくなると思います。さらに、公式の丸暗記では、時間が経つと忘れてしまうかもしれませんが、理論的に覚えていると、脳の構造的にも忘れにくくなるということもあります。なので、この勉強方法をオススメする方はたくさんいますし、私もこのやり方で勉強しました。 ただ、人によっては向き不向きがありますので、これを絶対に使った方がいいとは私は言えません。 実際に、私もこれで苦手だった数学が、だんだんと解けるようになったので、興味があれば、是非やってみてください。 長文失礼しました。是非参考になればと思います。
大阪大学基礎工学部 tomato-juice
51
3
文系数学
文系数学カテゴリの画像
共通テスト数学 点数取れない
こんにちは! 数学では、問題文に出ている数や文字からある程度方針が立てられるような問題が多いです。 簡単な例ですが、例えば三角関数では、問題文に外接円が出てきたら正弦定理を使うのだろう、問題文に3つの辺が(もしくは2辺と角の大きさが)でてきているなら余弦定理を使うのだろう、と言ったものです。 問題集に関わらず、解いているときや解説を見るときにこの見方ができるようになるかならないかで大きく成長度合いは変わっていきます。ここが大事なポイントです! これができるようになると、〇について求めたいから、先に☆について求めればいいのか!という考え方ができるようになっていきます。 勉強法は様々ありますが、問題集をやる→間違えたところをチェック→1日後と3日後にもう一度→1週間後と1ヶ月後にもう一度がおすすめです。期間は人によりますが、私は答えや解き方を暗記してしまわないようにこのサイクルで行っていました。言い換えると、解き方を思い出して解くのではなく、きちんと解き方を考えながら解くようにしていたということです。解き方を暗記してしまうと応用が効きにくくなってしまうからです!伸び悩んでしまう人がしがちなポイントです。 以上の2点抑えてくだされば、キヨ猫さんはもっと伸びるかなと思います(すでにできていたら申し訳ないです_(._.)_)。あとはやはり量をこなしましょう。勉強は効率と量のかけ算だと思います。数学は特に解き慣れていくことが大切です。 まじでがんばってください!みんな応援しています!
東北大学農学部 HNO3
20
2
理系数学
理系数学カテゴリの画像
この数学の問題を教えて下さい🙇
自然数を8で割った余りは0〜7になるのは理解できると思います。 そこで、nを自然数とすると、 8で割った余りが 0→8n 1→8n 1 2→8n 2 3→8n 3 4→8n 4 5→8n 5 6→8n 6 7→8n 7 とすることですべての自然数を表すことができます。問題で聞いているのは平方数ということなので、それぞれを2乗すると、 0→64n^2=8×8n^2 1→64n^2 16n 1=8(8n^2 2n) 1 2→64n^2 32n 4=8(8n^2 4n) 4 3→64n^2 48n 9=8(8n^2 6n 1) 1 4→64n^2 64n 16=8(8n^2 8n 2) 5→64n^2 80n 25=8(8n^2 10n 3) 1 6→64n^2 96n 36=8(8n^2 12n 4) 4 7→64n^2 112n 49=8(8n^2 14n 6) 1 となります。 すべて(8n ○)^2という式になる以上、n^2とnの係数は8の倍数になるので、自然数部分である余りの2乗部分を8で割った時の余りが平方数の余りになります。 長くなってすみません。わからなかったらまた質問してください。
東北大学経済学部 りーーー
0
0
理系数学
理系数学カテゴリの画像
数学の図形の参考書を別にやるべきか
着眼的にはかなりいいと思います。自分の苦手な分野をそれについて徹底的に練習し、解説してある参考書で苦手を補うということは大切です。 もし、図形に特化した問題集があるのならやってみたらいいと思います。 が、僕の知ってる限りではあまり図形に特化したものというのはないんですよね。 整数、場合の数・確率、微積・三角関数、等のものは結構専用の参考書あるんですが、図形については、見たことはありません。 もしなかった場合、自分なりに図形に関してまとめるというのがいいと思います。 例えば、直角って聞いたら、 直角二等辺三角形、30・60・90度の三角形、正方形・長方形、傾き-1、内積0などが思いつくとおもいます。この辺を自分なりにまとめておくと、かなり頭の中が整理されてくると思います。 基本的に高3までの数学は、単元ごとに学んでそれを潰していたと思うんですが、これからは別のまとめ方をして、1つの問題に対して色んな考え方をしていきましょう。そうすると数学力ぐんと伸びます。 また、この色んな方向からまとめてみるというのは、ほかの科目でも使えます。イメージとしては、暗記したものを、あらゆる方向から縛ってがんじがらめにする感じです。そうすると定着率があがるだけでなく、色んな場面でのアウトプットがしやすくなりますよ。
慶應義塾大学商学部 タイ
7
2
文系数学
文系数学カテゴリの画像
数Ⅲについて
この質問に素直に答えるなら余裕で習得できるよ🙆‍♂️ ただ、前提として1A2Bが正しく理解できている必要があるよ! 数3の範囲について少し説明するね。 ①平面上の曲線 楕円とか双極線っていう、円の上位互換みたいなやつが出てくるよ〜。 →数2の図形と方程式の応用だからそこがしっかり出来てないとダメ🙅‍♂️ ②複素数平面 複素数を図形的に扱っていく単元だよ!図形を回転させれるようになるね🙆‍♂️ →数2のいろいろな式の範囲の複素数がマスター出来てないと🙅‍♂️ ③関数と極限 数2指数関数、対数関数、三角関数、数B数列ができたら、それを無限大までビヨーンって伸ばすとどうなるのってお話しだね。 →上に書いた単元はマスターしよう! ④微分 今までの微分より関数が複雑になっていくよ!でもパターンがあるから網羅できれば大丈夫👌 →数Bの微分をマスターしておこう! ⑤積分 体積とか曲線の長さを求められるようになるよ🙆‍♂️簡単ではあるけど計算が面倒になるから計算力も必要! →数Bの積分をマスターしておこう!
東京工業大学物質理工学院 yuya
23
5
理系数学
理系数学カテゴリの画像
ベクトルがどうしても苦手です。
まずベクトルの根本から理解しましょうか。 ベクトルとは 方向と大きさを兼ね備えた量のことを言います。 (1,2)と言われたら 大きさ 方向共にわかりますよね? しかし! 逆に言えば方向と大きさしかわかりません。 宝探しに例えるならば ベクトルは 「南に4歩 西に3歩あるけ」という情報しか持ちません。 つまりはスタート(始点)が決まらなければ 宝の場所(終点)も分からないのです。 そこで出てくるのが位置ベクトルです。 位置ベクトルは始点を(0.0)に固定することで 終点を決めようというベクトルです。 より簡単にいうならば 原点(0,0)からある点(a,b)に行くためのベクトルのことを位置ベクトルと言います。 例えば 位置ベクトル(1,2)と言われたら 原点(0,0)からある点(1,2)にいくためのベクトルですよね? つまり!お分かりだと思いますが 位置ベクトルの数値は座標の数値と同じになります。 なので 座標の計算で成り立つ公式は位置ベクトルでも成立します。 例えば 内分点の公式は内分ベクトルの公式と等しいですよね。 ここで頭がこんがらがりガチなポイントとしてvAB=vOB-vOAがあげられます。【ベクトルABをvectorの頭文字をとってvABと書きました。】 ここで意識しなければならないのは 位置ベクトルは座標のように扱うことができるだけで本質的にはベクトルです。 vAB=vOB-vOA=vOB vAO となり、AからOへ行くベクトルとOからBへ行くベクトルがあるので結果として AからBへ行くことができます。 ついてこれましたか? 次に ベクトルといえば内積(外積)が大事ですね。 これに関してもお話ししましょう。 ここにvAB=(a,b)とvCD=(c,d)があるとしましょう。 内積とはvAB•vCDの計算のことを言います。 具体的にいうならば vAB•vCD=ac bdですね。 そしてvAB•vCD=AB×CD×cos@ (@はABとCDのなす角です)も有名です。 しかしなんのことかさっぱりですよね? 詳しく説明していきます。 /vAB/^2=(vOB-vOA)^2=/vOB/^2 /vOA/^2-2OA•OBここまでは楽勝ですね。 ここで三角形OABを書いてみてください。 これ何かに似ていませんか? そうです余弦定理です。余弦定理は AB^2=OA^2 OB^2-2OA×OB×cos@です。 見比べてみると 2OA×OB×cos@=2OA•OBとなりませんか? これこそが その不可解な等式のメカニズムです。 ∴実は 外積は vAB×vCD=ad-cb=AB×CD×sin@となります。 なので外積÷内積をすることでsin@/cos@=tan@などとすることもできます。わりと便利ですね。 長々とベクトルの話をしてきましたが、センターのベクトル問題で得点を取るための話をします。 ずばり一番重要なのは 内分公式の完ぺきな理解です。 MがABをt:sに内分するとすると vOM=s vOA t vOB /s tが成立することは 内分点の公式から明らかです。 更にvOM=s/s t vOA t/s t vOBと変形でき、係数の和が1になっていることをおさえておきましょう。 では 係数の和が1にならない時(内分 外分が成立していない時) 式に意味を持たせるためにはどうすればいいでしょうか。 具体例をだすと、 vON=2/3 vOA 2/5 vOBのとき、Nはどのような点でしょうか? 繰り返しになりますが、その点Nに意味を持つ意味を知るためには 係数の和が1になることが大切です。 なので例えば vON=3/5(10/9 vOA) 2/5 vOBと変形するとNは OQ=10/9 vOAを満たす点Qと点Bを2:3に内分する点とわかりますよね。 そしてもう一つ 発展させるとこれによって交点を求めることもできます。 例えば 点Tが直線ABと直線CDの交点であるとしましょう。 このときTは線分AB上でかつ線分CD上ですね。 そしてここでポイントなのは 直線AB上にあるということはTは線分ABの内分点であるということ。 線分CDについても同様です。 しかし具体的に何対何かはわからないので、x:(1-x) 、y:(1-y)と仮定して立式してみます。 vOT=x vOA (1-x) vOB......㊀ vOT=y vOC (1-y) vOD......㊁です。 そしてその後の問題の流れとして想定されるのは vOCやvODをvOA vOBを用いて表すことができ、 それを㊁へ代入し、㊀と係数を比べます。 具体的に vOC=vOA vOB vOD=2 vOA-3vOBと仮定して考えてみると、 ㊁式はvOT=y(vOA vOB) (1-y)(2 vOA-3 vOB)=(y 2-2y) vOA (y 3-3y) vOBとなりますね。 ㊀と係数を比較すると (y 2-2y)= x (y 3-3y)=(1-x)となり、x,yが求まり、それによってvOTが特定されます。 などなど 上記のことがしっかり完ぺきに理解できて入れば大体の問題はとけるのではないかなと思われます。 あとは面積公式などもありますが、それらは内積の式を考慮すれば必然的なことだとわかるはずです。 長くなってすいません。 頑張ってください。 ∴誤字があればすいません。
京都大学工学部 hiroki
121
3
理系数学
理系数学カテゴリの画像
図形の性質を勉強するとき
この単元は、二次試験では単独で出ることはあまりありませんが、センターでは必出ですよね。図形の性質で大事なのは 1.三角形の五心の性質を区別し、理解する 2.方べきの定理を「覚えて」「使える」ようにする。 3.オイラーの多面体定理など空間図形に慣れる。 ことだと思います。1.に関しては図形の性質だけでなく、ベクトルや図形と式などの分野とも絡んできますので必ずできるようにした方が良いでしょう。2.はセンターで頻出の問題ですから、チャートやセンター型の問題集でたくさん演習しましょう。3.は、センターでもあまり出題されてないような気がしますが、範囲内である以上来年出されても文句は言えないので、 教科書やチャートで基本事項を確認して、演習もしておくと良いでしょう。まず大事なのは、1.2.を完璧にすることだと思います。
北海道大学法学部 AO
16
0
文系数学
文系数学カテゴリの画像
二次試験 記述問題
私が当時、数学の記述問題を解くときに意識していたポイントを、いくつかまとめてみたいと思います。 これは、当時の数学担当の先生に教えてもらったものなので、是非参考にしてください。 ・問題文を整理する。 まずは、いきなり解き始めるのでは無く、与えられた条件と問われている答えを、整理することから始めます。 焦って解いてしまうと、いつの間にか問題と全く関係の無いものを求めていたり、見切り発車でスタートしてしまうと、初めから解き直さないといけないことになったりするので、しっかりと予想してから解くようにします。 また、問題文で与えられた条件は、解く最中に全部を使うことがほとんどなので、条件の下に線を引いておいたりすると、見返すときも楽になります。 条件を一本線、答えを二本線など、問題文自体に線を引くと見やすいかもしれません。 ・答えを書く時には、式だけではなく日本語もしっかり書く。 記述問題では、答えのマルバツだけでなく、部分点を貰えることがあります。これは、式ではなく日本語の部分で貰えることが多いので、省略せずにしっかりと書きましょう。 例えば、三角比の問題に対して余弦定理を使おうと思った時に、いきなり余弦定理の公式を書くのではなく、「△ABCに対して余弦定理を使うと、」という風に書くといいでしょう。 また、方程式の問題等で最大値や最小値を求める問題などは、範囲があればしっかりと、「-3<x<5 の範囲であれば、」のように定義域をしっかり書くことが大事です。 これは、問題集や模試の模範解答などにも、解答例として書いてあると思うので、それを参考にしながら書くといいと思います。 ・図やグラフは絶対に書く。 問題が図やグラフに関係のある問題では、必ずと言っていいほど図やグラフを書いてください。これは、自分が解く時でも、自分の中で整理するためにも使えますし、先程も挙げた部分点という観点でもものすごく重要になります。 図形や関数の問題だけでなく、確率や数列・ベクトルでも、書けるものはどんどん書いていきましょう。 ・前の問題の答えも使ってみよう。 大問の中で、(1)~(4)まである問題をよく見ると思います。(4)の問題を解くときにどうやって解こうかなと考えてしまうことがあれば、ぜひ(1)や(2)の問題を見直してみてください。この答えを使って解くようになっていたり、これがヒントとして使える問題がほとんどになってます。 センター数学でも前の問題の答えを使って解く問題がよくあると思いますが、記述問題でも同じです。前の問題はどんどん使っていきましょう。 ・計算は丁寧に、見直しはしっかりする。 記述問題で重要なのは、計算量だと思います。大問一つ一つに、たくさんの文字と式を書かないといけません。解くときは焦らず丁寧にすることで計算ミスをなくしましょう。最初の方でミスをしてしまうと、すごくもったいないです。 また、計算ミスは誰にでもあることなので、しっかり答えを出した後にも見直しをしましょう。時間が余れば検算をするのもいいと思います。 たくさん書いてしまいましたが、一つずつしていくと、記述問題も点数を取れるようになると思います。 是非参考になればと思います。頑張ってください!
大阪大学基礎工学部 tomato-juice
21
1
文系数学
文系数学カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
36
8
文系数学
文系数学カテゴリの画像