3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],""] 7:I[231,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],""] 8:I[212,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"default"] f:I[490,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","180","static/chunks/180-81e85a86363cff5f.js","185","static/chunks/app/layout-912b3c3a6fc60489.js"],"GoogleAnalytics"] 4:["id","6frvtfHsrs3GXXbM2dH2","d"] 0:["B6-Unh86-QXjND8ROachZ",[[["",{"children":["advice",{"children":[["id","6frvtfHsrs3GXXbM2dH2","d"],{"children":["__PAGE__?{\"id\":\"6frvtfHsrs3GXXbM2dH2\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["advice",{"children":[["id","6frvtfHsrs3GXXbM2dH2","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","$L6",null,{"async":true,"src":"https://securepubads.g.doubleclick.net/tag/js/gpt.js","crossOrigin":"anonymous"}],["$","$L6",null,{"id":"google-ad-manager","children":"\n window.googletag = window.googletag || {cmd: []};\n googletag.cmd.push(function() {\n googletag.defineSlot('/102643165/pc-under_title', ['fluid'], 'div-gpt-ad-1749012831201-0').addService(googletag.pubads());\n googletag.defineSlot('/102643165/unilink_web_under_advice', ['fluid'], 'div-gpt-ad-1749138434339-0').addService(googletag.pubads());\n googletag.pubads().enableSingleRequest();\n googletag.pubads().collapseEmptyDivs();\n googletag.enableServices();\n });\n "}],["$","body",null,{"className":"__className_f367f3","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/74362f5c2b54c8db.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"因数分解難問 | UniLink"}],["$","meta","3",{"name":"description","content":"(x−y)^2−2(y−x)+1の因数分解した答えを教えてください"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3903,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"ClientInfo"] 14:I[2798,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"AdUnderConsultation"] 15:I[2582,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"AdviserInfo"] 16:I[9083,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"AdviserProfile"] 17:I[7060,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"AdUnderAdvice"] 18:I[3194,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"CommentPostButton"] 1a:I[3866,["51","static/chunks/795d4814-03346c8d233b4adb.js","212","static/chunks/212-70508e17017a12c2.js","231","static/chunks/231-5dc9f3acdba63b0c.js","54","static/chunks/54-f848f8ba1c362ca7.js","23","static/chunks/app/advice/%5Bid%5D/page-2c9c2b8245971fa7.js"],"AdOnAdviceList1"] 19:Tdc4,数学では『条件“文”』『条件“式”』『条件“図形”」の翻訳ができることが第一歩かと思います。 役に立つか立たないかは棚に上げて、与えられた問題文をすべて式に翻訳してみるといいでしょう。意外とこれができない人が多いです。 ただ慣れてくると本当に「未来が見え」てきます。 例として2次不等式x^2+2x+1>0 を解くときには、“式”のまま捉えて (不等式の左辺)= (x+1)^2となり、 x=-1以外の実数はすべて不等式(x+1)^2>0を満たす。 と考えることもできれば、 2次関数のグラフy=(x+1)^2[書いてみてください]を考え、y>0(すなわち条件式)を満たす部分はx=-1以外の全ての実数である。と考えることもできます。 このように1つの問題を解くのにもさまざまな方法が考えられます。 つまり条件を翻訳する道具を増やすことが最優先です。どれだけ難しい問題が出たとしてもその手に入れた道具を使えば必ず解けるようになっています。 学校で青チャートやFocusGoldなどが配られているなら苦手な分野は例題だけでも手をつけると値が変わったときや複雑になった場合でもこの方法かな?と目星がつくようになります。 ただ、やるなら1分野全てをやってしまうのがおすすめです。ほとんどの大学においてチャートを辞書として用いても解けない問題はでません。模試でもそのような傾向が強いです。 また、よければ一度九州大学の数学1Aの問題と解答を見てみてください。今の時点で完答することはかなり難しいと思いますが、解答を見れば「これしってる!」ってなる解答がちらほら見つかると思います。東進さんの過去問データベースに登録するといろんな大学の過去問を無料で見ることができます。 少し話を戻しますが、 来年度高校2年生ということで去年は数学1Aを履修されたかと思います。 数学Aの「確率・場合の数」の分野は理論的にまとめて考えることができるものもあれば、むやみに書き出したほうが解きやすいものもあります。ここで、あくまで一例ですが「確率はけたたましい数の場合分けの可能性がある」ということを認識しているのとしていないのでは大きな差があります。人間は一度難しいと思ったことに対して自分でバリアをはる性質があるのでどれだけめんどくさい解答になったとしても最後まで解ききってみてください。そして自分の答えがでて初めて解答をみて、「こうすればよかったんだ」と思うことで道具が増えていきます。初めから解答に頼ると記憶に残らなくなります。 先に伝えておきますが、初めは全く成長が感じられません。辛抱強く続けることで必ず急に伸びるタイミングがあります。数学は特にその傾向が強いです。 さいさんにはまだまだ時間はあるのでじっくり時間をかけて仕上げていくと思考力が伴う他の教科にも役立つと思います。 長くなりましたが、また何か細かく聞きたいことなどがあれはいつでも気軽に質問してください。 応援しています。1b:T1422,とても良い質問です。「チャート式の例題を抽象化して理解する」というのは、確かに多くの人が言うことですが、その“抽象化”が実際どういうことなのか? どうやればいいのか?をしっかり説明してくれる人は意外と少ないんですよね。 だからこそ、あなたのように「それが難しい」「コツが知りたい」と思っているのは、むしろ数学力を本質的に伸ばすうえでとても大事な姿勢です。ここでは、「なぜ抽象化が大事なのか」→「そもそも抽象化とは何か」→「具体的なやり方」→「今日から使える練習方法」という流れで解説していきます。 ◆そもそも、なぜ“抽象化”が大事なのか? 数学の入試問題は、チャートなどの典型問題を「ひとひねり」して出してきます。 その「ひとひねり」が何なのか気づける人は、「あ、これは〇〇型の問題だ」と分類できるのです。 つまり抽象化とは、 「個別の問題」→「共通する本質や型」を見つけて、「新しい問題」でも応用できるようにする という脳の整理術です。 ◆「抽象化」って結局どういうこと? たとえば以下のような問題があるとします: 例題(チャート): 「a, b が実数のとき、x² + 2ax + b² = 0 が重解を持つような a, b の関係を求めよ」 このとき、ただ「判別式 D=0 を使えばいいんだ」と覚えて終わってしまうと、それは“表面的な理解”にとどまります。 でも、「なぜ判別式なのか?」「この問題の型は何なのか?」を考えることで、以下のような抽象化された理解に変わります: ✔ 2次方程式が「重解を持つ」→「判別式 D = 0」 ✔ 「係数が文字になっている」→「Dを文字式で計算」 ✔ つまりこれは:「2次方程式の判別式による解の個数問題」型! そして「抽象化」の第一ステップとは、ズバリ: 「この問題は、何を求める問題だったのか?」を、言葉で要約すること。 この作業ができれば、「あ、これは○○型の問題だ」と分類できて、初見の問題でも落ち着いて対応できます。 ◆具体的な練習方法 では、チャートの例題をどうやって抽象化していけばいいのか? 以下の3ステップでやってみましょう。 ✅ ステップ①:「何を聞かれているのか?」を明確にする • 問題文を見たら、目的を言葉で言ってみる • 例:「〇〇の範囲を求める」「△△が成立する条件を求める」「グラフの接点の個数を求める」 ✅ ステップ②:「どんな型(考え方)で解いたか?」を整理する • 使った知識・考え方をリストアップ • 例:「判別式を使った」「数列の漸化式を立てた」「面積の最大値問題としてグラフ化した」 ✅ ステップ③:「同じ型で解ける問題を自作してみる」 • チャートの例題と同じ“構造”をもつ別の問題を、似た数字で作ってみる • 解法の流れが同じなら、抽象化できている証拠! ◆実践例 例題:「2次関数 f(x) = ax² + bx + c が x軸と接する条件を求めよ」 ステップ①:目的の整理 →「グラフが x軸と接する=解が重解」→接する条件=判別式 D=0 ステップ②:型の把握 →「2次関数のグラフの接線・接点に関する問題」→“判別式活用型” ステップ③:自作例題 →「f(x) = 2x² + kx + 1 が x軸と接するような k を求めよ」 → D = k² - 8 = 0 → k = ±√8 ◆抽象化が苦手な人がやりがちな落とし穴 • ✅ 答えや解法を「丸暗記」で済ませてしまう • ✅ 問題を「パターン」ではなく「個別」として見てしまう • ✅ 「問題の名前」をつけようとしない(分類しない) ◆今日から始められること • チャートの例題を解いたあとに、必ず「この問題の型は何か?」を1文でまとめてノートに書く • その型の名前に「タグ」をつける(例:「判別式型」「グラフ接点型」「数列和の工夫型」など) • 1週間に1度、「型」だけを見返す時間を作る(→問題を思い出せるかチェック) ◆最後に:言葉にできる理解は、応用できる力になる 抽象化とは、「数学を問題の海から引き上げて、自分の武器として整理する」作業です。 最初は難しいけど、毎日1問ずつ型を言語化するだけで、確実に目に見える力になります。 焦らなくていいです。言葉で整理する努力を続ける人が、最終的に初見の問題に強くなります。 応援しています。わからなくなったら、また相談してください。いつでも力になります。1c:Te7a,ねぎとろさんこんにちは〜☺️ 数学は一般化が大事だ! ってみんな簡単に言いますよね。 「でもそれができねぇんだよ‼️」 と私も受験生時代に怒りに震えていました笑。 ということでここからは怒り続けて気付いた数学の一般化の方法についてお教えしたいと思います。 🌱レベル1 チャートやフォーカスゴールドの問題のタイトルをみよう! チャート式やフォーカスゴールドといった問題集を持っていますか? これらの問題集は全ての例題にタイトルがついています。これはその問題の特徴を教えてくれているのです。 いわば問題の本質です。 例えば、 『独立二変数の最大最小』というタイトルがついていたとします。 その解説で使われていた解法はその他すべての独立二変数の最大最小問題に使えるということです。 これで一般化できましたね! 具体的な問題→全ての独立二変数の問題 📕レベル2 自分で問題のタイトルをつけよう! 次にタイトルがついていない問題に対しても一般化できるようになりましょう。 先ほども説明した通り一般化というのは問題にタイトルをつければできます。 初見の問題でも、タイトルをつけてやればそのタイトルが当てはまる問題すべてに解法を当てはめられます。 必ずしも自分がつけたタイトルが正しいとは限らないじゃないか!! と思った方もいるでしょう。 それでいいのです。勘違いしてても、後で必ず間違えに気づけます。そこで修正していけばいいのです。 これを繰り返して自分の一般化を正確なものにしていくことが大切です。 💪レベル3 一部の処理の一般化をしよう!! 正直問題全体に対して一般化をしても、同じような問題に出会う確率はそこまで高くないです。(そうはいってもレベル1、2もめちゃくちゃ勉強になるよ) そこで、もっと細かく一般化を行なっていきましょう! つまり、細かい処理に名前をつけるということです。 例えば、 等差数列×等比数列の和をどのようにして求めるか覚えていますか? 解をSとおいて公比をrとすると rS−Sを行えば解けるんでしたね (私はこれをずらして引くと覚えました) このように細かい処理にも一般化が存在しているのです。 これをすると一問から得られる情報量がグッと上がります。 🚨注意点 このようなことを解説すると、英単語みたいに覚えようとしてしまいますよね。 それはNG🙅‍♀️ なぜかというと使っていくうちに覚えるのが最も効率がいいからです。 使っていくうちに覚えると自然と出る順に覚えます。英単語のように覚えると使えない一般化も使える一般化と同じくらいの強度で覚えてしまいます。これでは非常に効率が悪いです。 必ず問題の中で覚えるようにしましょう。 また、一般化した後にそれを適用できるかどうか判断することや気づくことも非常に難しいです。常に意識して問題を解く必要があります。 さて、今回は一般化について解説していきました。意外とできそうでしょう?これをすると一気に成績が上がることもあるのでぜひ取り組んでみてください!1d:T12ba,普遍的なことだけを説明しても中々伝わりづらいと思うので、具体的に問題を1問出しながら説明させてください! まず前提として、応用の問題が解けるようになるためには以下のことが必要になります。(結論です) ・基本的な解法がすぐに出てくるようにする ・問題を見た時、前の問題との関連性から考えていく ・誘導に乗っていくのに慣れるのにはとにかく演習量が必要 1つ目は恐らく大丈夫だと思います。また、3つ目もこれから2次試験向けの演習を重ねるうちに「あの時の誘導に似てるなー」というような感覚で段々できるようになってくるものです。つまりは慣れです。自分自身もこれを強く感じています。最初は中々誘導に乗れず辛いかもしれませんが、まずは量をこなしましょう。 おそらく問題は2つ目です。 これは分かりやすく言うと、「こうやってやっていって…あ、(1)(2)ここで使う?」という考え方ではなく、「(1)や(2)の問題の考え方を上手く使えないかな〜」「今までやったことのある基本問題の考え方が何か使えないかな〜、あ、文章のこの部分前にやったあの問題文と似てるな〜」と言ったような、初めから誘導や基本問題などのヒントの方から答えを探っていくように考えていくことです(長くてごめんなさい)。 実際に問題を見て考えていきましょう!以下は2015年の九大の問題です。 以下の問いに答えよ。 (1)nが正の偶数のとき、2^n-1は3の倍数であることを示せ。 (2)pを素数とし、kを0以上の整数とする。2^(p-1)-1=p^kを満たすp,kの組を全て求めよ。 (※^の後は指数を表します。2^n-1は2のn乗-1、2^(p-1)-1は2のp-1乗-1です) (1)は割愛しますが、n=2l(lは自然数)とかと置いて二項定理で分解して3で括ったり、帰納法を使えばいいと思います。とにかく2^n-1が3の倍数だと分かればいいです。 問題は(2)ですね。先程言った通り、誘導を上手く使えないかという点からとにかく問題を見ましょう! まず見るべき点は式の形が左辺と似ている所です。誘導が使えそうですよね。 誘導を上手く使うコツですが、「誘導の部分と問題文の該当部分の違いを上手く見分けること」です。今回であればnがp-1に変わっています。また、(1)でnは"正の偶数"でしたが、p-1は"素数-1"ですよね。 ここの違いは何かあるでしょうか?? まず整数問題で素数が出たら、「2とそれ以外」という見方をするのは演習量をこなせば分かってきます。素数の中でも2だけ偶数で稀有、と認識できていればOKです。(ここは基本問題的な解法暗記の部分) 素数-1は、素数が2のときだけ奇数、素数が2以外のときは偶数になりますよね! ですので、2か2じゃない素数かで分けます。2じゃない素数のときは(1)の条件と一致するので使えそうですよね。まずは使いましょう! ○pが2以外の素数のとき (1)より左辺は3の倍数です。ということは右辺も3の倍数になります。p^k、つまり素数の累乗が3の倍数ということはpは3以外ありえないですよね。ここは素数ならではです。 ですのでp=3から左辺に代入するとk=1と決まります。 ○pが2のとき 代入していくとk=0になりますね。 以上から(p,k)=(3,1),(2,0)となりました! このように、「基本問題の解法はすぐに出ておくようにする」「誘導から常に考えていく(誘導と問題文の違いを認識し、見分けていく)」ことの重要性がわかったと思います。また、基本問題というのは、教科書や青チャートにある典型問題もそうですが、素数は2とそれ以外に分ける、といったような"応用問題でよく出てくるテクニック"もそうです!これは演習量を詰まないと中々インプットされないので、「演習量が大切」なのも再認識できるでしょう。 また、1問に時間をかけて思考していくこともとても大切です!最終的にその標準問題の解き方を覚えられると役には立ちますが、思考力というのは思考する時間を取らないと中々伸びません。1問に10分は考える時間を取りましょう! めちゃくちゃ長くなって申し訳ないですが、参考になれば幸いです!! 2:["$","main",null,{"className":"px-4 pt-4 pb-4","children":["$","div",null,{"className":"max-w-3xl mx-auto w-full","children":[["$","div",null,{"className":"mb-8","children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/h6xeh63x?advice=6frvtfHsrs3GXXbM2dH2","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"mb-4 rounded"}]}]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"因数分解難問"}],["$","div",null,{"className":"flex justify-between mb-4","children":[["$","div",null,{"className":"text-left text-xs text-caption","children":["クリップ(",0,") コメント(",0,")"]}],["$","div",null,{"className":"text-right text-xs text-caption","children":"10/16 9:05"}]]}],["$","div",null,{"className":"coach-mark mb-4","children":"UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。"}],["$","div",null,{"className":"mb-4","children":["$","$L13",null,{"clientImageUrl":null,"clientUserName":"ああ","infoString":"中学 東京都 金沢大学理工学域(55)志望","adviceId":"6frvtfHsrs3GXXbM2dH2"}]}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","consultation-part-0",{"children":[null,"(x−y)^2−2(y−x)+1の因数分解した答えを教えてください"]}]]}],["$","div",null,{"className":"pt-4","children":["$","$L14",null,{}]}],null]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"回答"}],["$","div",null,{"className":"mb-4","children":["$","$L15",null,{"adviserImageUrl":null,"adviserName":"ゆーすけ","adviserDepartment":"東北大学理学部","adviceId":"6frvtfHsrs3GXXbM2dH2"}]}],["$","div",null,{"className":"coach-mark mb-4","children":"すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。"}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap mb-4","children":[["$","div","advice-part-0",{"children":[null,"x-y=Aとおく\n(与式)=(x-y)^2+2(x-y)+1\n =A^2+2A+1\n =(A+1)^2\n =(x-y+1)^2\n\nこんな感じでしょうか。"]}]]}],["$","div",null,{"className":"mb-4","children":["$","$L16",null,{"adviserImageUrl":null,"adviserName":"ゆーすけ","adviserDepartment":"東北大学理学部","adviceId":"6frvtfHsrs3GXXbM2dH2","numberOfFan":13,"clipsAvg":12.875,"adviceRateAvg":4.897435897435898,"profile":"東北大1年生\n受験生時代 塾なし野球部\n文武両道目指してました!\n質問あったらいつでもどうぞ!\n\nその他の合格校\n早稲田大学 教育学部\n東京理科大学 理学部第一部\n青山学院大学 理工学部(共テ)\n明治大学 理工学部(共テ)\n\n受験科目\n共テ5教科7科目(国、数、英、物、化、地理)\n2次 数学、英語、物理、化学"}]}],["$","div",null,{"children":["$","$L7",null,{"href":"https://ck.jp.ap.valuecommerce.com/servlet/referral?sid=3364577&pid=884970531&vc_url=http%3A%2F%2Fshingakunet.com%2F%3Fvos%3Dnrmnvccp0000100","rel":"nofollow","target":"_blank","children":["$","$L8",null,{"src":"/images/document_request_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink パンフレットバナー画像","className":"mt-4 rounded"}]}]}],["$","div",null,{"className":"pt-4","children":["$","$L17",null,{"id":"adsbygoogle-init-under-advice"}]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","h1",null,{"className":"text-xl font-semibold","children":["コメント(",0,")"]}],["$","$L18",null,{"adviceId":"6frvtfHsrs3GXXbM2dH2"}]]}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"text-xs p-4","children":"コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。"}]}],["$","h1",null,{"className":"text-xl font-semibold","children":"よく一緒に読まれている人気の回答"}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"divide-y","children":[["$","div",null,{"children":["$","$L7",null,{"href":"/advice/zZtYq3jbkKCgugr2LyN1","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"数学の一歩目"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$19"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["大阪大学基礎工学部"," ","sho152"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math12.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/bU4qMXkBTqPwDZPuncb2","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"隣接3項間漸化式"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは、名古屋大学医学部医学科のメイメイといいます。\n(an-an-1)=bnとするとb1は求められないですね。\n\n(an+1)-(an)=2[(an)-(an-1)]\nが出てきているはずですが、\n\nn-1の項があり基本的にn≧2で考えています。\nこれをn≧1に直してみると\n(an+2)-(an+1)=2[(an+1)-(an)]\nとなります。\n単純にnの部分を1ずつずらしただけです。\n\nこの状態で(an+1)-(an)=bn\nと置いてみましょう。\n\nb1が求められるはずです。(ちなみにb2は必要ないです。)\n\nつまり(bn+1)=2(bn)、b1=(a2)-(a1)=8の等比数列に帰着しますね。\n\nこれを解くと、bn=8・2^n-1=2^n+2となります。(2^n-1は2のn-1乗という意味です。)\n\nすなわち、(an+1)-(an)=2^n+2\n\n両辺を2^n+1で割ると\n\n<(an+1)/2^n+1>-(1/2)<(an)/2^n>=2\n\nとなります。\n\n(an)/2^nをcnとすると、(cn+1)=(1/2)(cn)+2\n\nこれを変形して、(cn+1)-4=(1/2)<(cn)-4>\n\nつまり(cn)-4=(-7/2)・(1/2)^n-1=(-7)・(1/2)^n\n\nよってcn=4-7・(1/2)^n\n\nこの両辺に2^nをかけてan=4・2^n-7 (n≧1)\n\nとなります。\n分かりにくくてすいません!\n\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["名古屋大学医学部"," ","メイメイ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math13.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1a","ad-on-advice-list-2",{"id":"ad-on-advice-list-2"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/C-l0SGgBTqPwDZPux8JN","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"2倍角の公式について"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"加法定理から、\nsin(a+b)=sina・cosb+cosa・sinb\nb=aとして、\nsin(a+a)=sina・cosa+cosa・sina\n⇔ sin2a=2sina・cosa\na=θと表せるから、\nsin2θ=2sinθ・cosθ\n\n同様に、\n加法定理から、\ncos(a+b)=cosa・cosb -sina・ sinb\na=bとして\n cos2a=(cosa)^2-(sina)^2\n( 読み方はcos2a= cos二乗θ- sin二乗θ)\na=θと表せるから、\n cos2θ=( cosθ)^2-(sinθ)^2 ←☆とする\n\nまた、一般に(sinθ)^2+(cosθ)^2=1\n(読み方はsin二乗θ+ cos二乗θ=1)\nより、 (sinθ)^2= 1-(cosθ)^2であるから、これを☆に代入して、\n cos2θ=( cosθ)^2-1+ (cosθ)^2\n⇔ cos2θ=2(cosθ)^2-1\n\nまた、同様に、\n cos2θ=1-2(sinθ)^2を導き出せる。\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学商学部"," ","タイ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/ilHZKYOfiHRc1bK4rehk","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"対数の計算"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"そもそも対数:logとは何でしょうか。\n a^p=M(a>0, a≠1, M>0)・・・①\nという等式が成り立つとき、\n log a(M)=p・・・②\nという等式が同時に成り立ちます。aを「底」、pを「指数」、Mを「真数」といい、log a(M)を「aを底とするMの対数」といいます。式②を見ればわかるように、log a(M)とは、「aを何乗したときMになるか」と言う値、すなわち、指数を表すものです。例えば、\n log a(XY)=log a(X)+log a(Y)・・・③\nが成り立つのも、このとき\n a^s=XY\nと言う関係が常に存在し、X=a^t、Y=a^uとすると、\n XY(=a^s)=X × Y\n       =a^t × a^u\n       =a^(t+u)\nとなり、したがって、\n s=t+u・・・④\nという関係を導くことができるからです。①と②から、XY、X、Yについても同様に、\n log a(XY)=s=t+u\n log a(X)=t\n log a(Y)=u\nと表せるので、結果として④は、\n log a(XY)=log a(X)+log a(Y)\nという式③になります。このように、logは、「対数」という名はあれど、その実「指数」のことを表しているのだということを頭に置いておくこと、つまり、①と②の対応関係を常に意識することが対数の理解の一助になるかもしれません。「logの数の大きい問題」というのがどんな問題を指すのかわからなかったので、ご期待に沿う回答ではないかもしれませんが、ご容赦ください。また、私の理解が誤っている場合は、これも申し訳ございません。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["北海道大学法学部"," ","たけなわ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math3.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/MlGMPoiUq9zaD7ia9w6i","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"この問題教えてください!"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"質問に対して結論から言うと、2^n+2で割るのも大丈夫です!\n\n 解説が2^n+1で割ると言うように書いているのは、左辺をAn+1/2^n+1のように綺麗にまとめられるからだと思われます。そのあとは、Anと2のべき乗のnが対応するように整理して解き進めていくとex)An+1/2^n+1 、どちらの方法でも同じ形になることがわかると思います。\n\n 私なりに解答の思考プロセスがどのようなものかご説明すると、「An/2^nの形を作りたいから、左辺で一旦綺麗にまとめてみよう!」と言った感じです。\n\n 質問者様のように、2のn乗を消すことから始めるのも、定石に則っていて素晴らしいと思います。\n\n 最後に総括すると、どのような式変形をしていきたいのかをまず考えて、逆算的に解き進めていくことが大切にしていく必要があるということですね。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学工学部"," ","nano_ges"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"className":"ml-3","children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math14.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1a","ad-on-advice-list-5",{"id":"ad-on-advice-list-5"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/lQ23gWoBTqPwDZPuLW7y","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1","children":[["$","div",null,{"className":"mb-1","children":"絶対値の不等式"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"一般式で書くと\n│f(x)│