UniLink WebToAppバナー画像

問題が解けないときどう進めるべき?

クリップ(12) コメント(1)
12/25 0:21
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

高2 埼玉県 早稲田大学基幹理工学部(65)志望

数学の問題を解くとき、解けない問題をとりあえず自力で解ける所までやるか、潔く解答を見るかでいつも迷います。前者をとった結果とても時間がかかってしまうので、解答を見てしまうのも手かなと思うのですが、それで力になるのかなぁと不安です。どうするのが良いでしょうか。

回答

ilneige

北海道大学工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
解けない問題に粘り強く取り組むことは間違っていないです。しかし、受験勉強は限られた時間の中で複数科目に取り組まないといけないので、ある程度の効率は必要です。時間を決めて、それまでに解けなければ解答解説を読むというのはどうでしょうか。 ただし、解答解説を"見る"のではなく、何故その解き方をしているのかきちんと"読む""考える"ことが大切です。解答例というのは数学のプロが書いているものなので、彼らがどういう考え方で解答しているのか読み取ることが大切です。たまに解答のプロセスが分からない解答解説がありますが、それは学校の先生などに質問してみましょう。 制限時間が来て中途半端にしか解答できなくても、どの段階までは解けていてどこからは解けなかったのか、解答解説を読みながら自分の答案を分析しましょう。そして、もう一度時間を測って解き直せば力になると思います。

ilneige

北海道大学工学部

0
ファン
5
平均クリップ
5
平均評価
メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

鈴のプロフィール画像
12/26 8:16
なるほど、解答を「読む」のですね、、 意識してやってみます、ありがとうございます!

よく一緒に読まれている人気の回答

難問との向き合い方
その感じよくわかります。 私の経験からお伝えするならば、あなたがお考えのようにたくさん問題を解くことと、さらに付け足すならば、制限時間を決めて難問と向き合うことが打開のカギになります。 1つ目のたくさん問題を解くことには大きく3つの目的があります。 ①典型問題の典型的な解法を身につけること。 ②問題の捉え方の視野を広げること。 ③計算ミスや勘違いを防ぐ注意力を高めること。 ①においては、いわゆる標準レベルの問題に相当しまして、問題集などでは例題として取り上げられていることが多いです。この手の問題は考え方を理解した上で動きをパターン化させてしまうのもアリだと思います。 ②については発想力です。よく問題を解いていて「こういう風に考えれば良かったのか」とか「着目する場所が違った」と思った経験はございませんか?いわゆるこの発想力を高めるには演習の経験値を積んで、問題の見方や捉え方を知っていくしかないと思います。 ③はおそらく最後まで悩むものです。このようなミスで本番減点されないためにも演習量は確保しなければなりません。 無意識的にこの目的が達成されますので、ひたすら問題を解く効果は実感しにくいですが、大変重要なものです。 2つ目のきちんと難問と向き合うことについては、上述した②に近いものがあります。つまり、難問は一見問題文を読んだだけでは解法が見えてきません。 それを打破するには、とにかく問題文から分かることを書き出してみる、その書き出されたものから他に分かること、ヒントはないかと悩み、少しずつ紡いでいくことで解法が見えてくることが多いです。 長い時間粘っていても効率が悪いですので、きちんと時間を決めて、その間はひたすらあれこれ考えて解法の糸口を見つける経験を日頃から積んでいると、自力で解ける問題が増えてくると思います! おそらく入試本番でも悩むような難問は出てきます。 そこで自力で解法を見出せるかどうかは、やはりたくさん問題を解く経験値と日頃から難問と向き合ってきたかの2つがキーになると思います!
東北大学教育学部 まー
11
1
文系数学
文系数学カテゴリの画像
解き直しでは解けるのにその場で模試が解けない
解き直しの時に解けるのは、1度その問題について考えているから、という可能性もあります。 おそらく、模試になると緊張というか気負いすぎて、問題に対して俯瞰して取り組むことができなくなっているのではないでしょうか? 模試を解いている最中にそんな感じがしたら、姿勢を正して遠くを見て気持ちを落ち着けましょう。 また、時間制限に慣れていないという可能性もあります。時間を意識するあまり、焦ってしまっているのかもしれません。1問にかける時間はこれだけ、とか決めてしまうと逆に焦って解けないことも多いです。これは慣れという面も大事ですが、時間をかけずに解けるなら、あまり時間制限を気にしない方がいいと思います。 正直、理科に関しては時間勝負のところがあるので時間制限を意識する必要はありますが、これに関しては演習量や模試を多く受けることによる慣れが大きいです。 自分が解き切るのにどれくらいの時間がかかるのかきっちり把握しましょう。
京都大学医学部 Yu
14
3
模試
模試カテゴリの画像
ひたすら解くだけ?
ひたすら問題を解いて解説を読むだけではなかなか力はつきづらいです。 重要なのは、解説を読んで、自分の回答のどこが間違っていたかを理解し、次はどうすれば間違えないかまで考えることです。これをやる人とやらない人ではとんでもなく差が出ます。 大体の受験生は、勉強を「やる」ことを重視します。やった時間は何時間とか、今日進めることができた参考書は何ページとかです。現文においても、文章を読んで問題を解き終わった時点で、勉強した気になりませんか?「あー、終わった」と。時によっては答え合わせが面倒で、やらないこともありませんか? ところが頭のいい人、伸びる人はそうではありません。自分がいかに「やったか」ではなく「成長したか」を重視します。問題を解くことがゴールではなく、問題を解いて、解説を読んで、自分のどこが間違っていたかを理解して、次どうすれば間違えないかまで落とし込むことがゴールです。そこまで考えられる人が、伸びる人です。決して解くだけでは終わらせません。むしろ本番はその後なのです。 さて、やや話が逸れましたが、ここまでできればひたすら数をこなすことである程度は力がつきます。 もう一歩、ジャンプアップしたい方は、ぜひ「ロジカルシンキング」という本を買って、読んでください。論理的思考力を鍛えるための本です。鍛えるというか、論理的思考力とはどういう考え方かを紹介していて、中に例題も数題あります。 受験期という大変忙しい中で、あえて受験とは直接関係のない本を読むかどうかはお任せします。が、個人的にはなぜロジカルシンキングの授業がないのか理解できないほど、現文はロジカルシンキングで簡単に解けるようになります。 頑張ってください。
慶應義塾大学商学部 R.I
148
4
現代文
現代文カテゴリの画像
一橋数学
ある程度の数学の基礎は身についていると思うのでその先の勉強方法について話したいと思います。 数学の難しい問題というのは解き方の展望が見えてこないものが多くあります。なので、正確に文章を読んで、文章の中からヒントを拾ったり、式の形をみて、使えそうな公式や、定石となる解き方を考えてみることが必要になります。おそらくランボさんはこのようにして、いくつか選択肢に上がった解法の中に正解となる解法があったのにそれが使えなかった、ということだと思います。しかし解き方を思いついてから最終的な解答方針まで見えてくることはほとんどないと思います。難しい問題はイメージとしては壁が2〜3段階あるという感じです。最初の足がかりとなる解き方をして出てきた式が解けない。そして再び考える。それに対して解き方を考えまたやる。問題を解く時はこれの繰り返しになってきます。 難しめの問題のイメージを話したので、次は勉強方法について書いていきたいと思います。数学は多くの問題集に手を出すより、一冊完璧に、とよく言いますが、その通りだと思います。なぜなら、結局一冊の中に大方必要になってくる解法は全て入っているからです。そして例えばプラチカであればその単元ごとにまとめて学習していくことをお勧めします。その時に確率であれば、P型、C型、漸化式型、円や数珠順列、条件付き確率、じゃんけんや、勝敗を決めるパターン、etcがあると思うので、そのパターンを「漏れなく、だぶりなく」身に付けるとともに、どのパターンの問題はどうゆうような問題文になっているのかを自分なりに考察することが大切です。例えば、簡単な例ですが、組み合わせの時に同じようなものを区別するかしないかで解き方が変わると思います。このように問題文や式を観察して、どのときにどのパターンを使うことが多いか分類すると良いでしょう。このとき、「漏れ」がないことで、どれかのパターンに帰着し、「だぶり」がないことで、実は同じ解法なのに出題形式が違うから両方覚えてしまって、どっち使うか迷うような手間が省けます。そこを意識して勉強するのがいいと思います。 最後に過去問についてですが、過去問はあくまで出題形式、傾向や、時間などを確認して実践するものだと思っています。なので直近6年のものは残しておくべきでしょう。またマスターって言葉の定義は曖昧です。マスターが過去問の解き方を覚えるだけであるなら無駄だと思います。問題を見て、なんでこの解法をしたのか考え、そして始めてその問題を見たと仮定したとき、その問題文からどんなキーワードを拾ったら、自分がその解法にたどり着くかというところまで考え、身に付けることができて、始めてマスターしたと言えます。それなら過去問のマスターはかなり有用だと思います。数学は初見で考え、解いて、解答をみて、終わる人が多く、初見で考えることが重要だと思われがちですが、それを可能にするには解答をみた後の上記の考察がもっとも重要になると思います。 試験本番までまだあと4ヶ月あります。十分に身に付けるだけの時間はあると思うので最後まで頑張ってください。応援しています。
京都大学経済学部 フランダー
30
2
文系数学
文系数学カテゴリの画像
分からなかった問題について
Stayさん、初めまして! あくまでも私の意見なので参考までにしていただけたらと思いますが、この時期だったら解説をよく読んで次に行っても良いと思います。 基礎ができる前だとやはり解答の流れなどを覚えると言う意味でもしっかりと書くほうがいいですが、ある程度基礎は固まっている場合にはわざわざ書く必要はないかなと思います。 書いて覚えるよりかは、分からない問題でなぜその解法になっているのかを意識しながら解説を読むことの方が大事です。 私が受験前の時期にやっていたのは、参考書などを解くときは最初の冒頭(方針作り)だけ書いて残りの計算などは飛ばしていました。その後に解答を見て方針が合っていれば次の問題に行くという感じでした。 もちろんそれだけだと計算力が落ちてしまうので、過去問はしっかりと最後まで解いていました。 参考になれば幸いです。 応援しています。頑張ってください!
京都大学工学部 さかさか
6
6
理系数学
理系数学カテゴリの画像
わからない問題にかける時間について
それは分野によって異なります。 例えば 微分積分の問題は15分程度考えてわからなかったら答えを見ても良いと思います。 なぜなら 微積はわりとワンパターンなので覚えたら終いだからです。 それに比べて 整数問題はワンパターンでは解けません。なのでじっくり考えるべきです。 どうしてもわからない時はその問題を一旦解くのをやめて、時間をおいて考えてみてください。 意外とわかったりします。 数学の偏差値を上げるためには 勉強の際 一問を一問で完結させないことがポイントです。 そのためには 問題を解いたら その類題も解いてみたり、難しい問題が出て来たら どこの発想がなくて解けなかったのかしっかり分析することがひつようです。 そしてもし過去問演習や模試の復習でわからない問題が出て来たら、 解答をすぐに見るのではなく、 思考のフローチャートを書いてみてください。 具体的にいうならば 三角関数の問題を解く際 ㊀グラフ㊁加法定理㊂変換公式 →㊂でいこう Cosだけの式になったから ㊀tで置換する㊁因数分解する㊂tanに変換してみる などなどと 樹形図のように思考回路を記すんです。 するとどの状況でどの発想が足りなかったのかが明確になり、次にも繋がる勉強になります。やってみてください。
京都大学工学部 hiroki
25
1
理系数学
理系数学カテゴリの画像
粘るか即答えを見るか
こんにちは!現在東京大学理科二類に通っています。ホルムンクスと申します。私の実際の受験勉強の経験を通じて、数学の問題の演習の方法についてお伝えさせて頂きたいなと思います。 私の意見ですが、質問者様が提起している2つの相反する勉強法は、どちらが良いと一概に言い切るのは難しいです。いずれの勉強法についてもメリットとデメリットがあり、また目的も異なります。 まず前者についてです。 メリットはなんと言っても、時間の節約になるということです。短い時間で多くの問題を処理できるという点では時間がいくらあってもたりない受験生にとっては喜ばしいことです。 しかしもちろんデメリットもあります。それは1回やっただけでは解法が定着しにくいということです。短時間でたくさんの解法を一気にインプットするため、記憶は長く持続せず、すぐに忘れてしまいます。 また、短時間で多くの問題を扱うことで「めっちゃ勉強した感」が出て、それだけで満足してしまうことが往々にしてあります。 そして、この勉強法の目的とは、「入試本番で使える武器をできるだけ用意すること」です。この勉強法では過去問や問題集の問題をとにかくたくさん解いて、様々な問題へのアプローチ、解法を身につけることを目指しましょう。これが入試問題を解く上での基盤になってくれます。 続いては、後者についてです。 メリットは、入試本番に即した演習ができるということです。入試本番では、当たり前のことですが答えをみることはできません。 この勉強法では入試本番と同じように、いろんな解法を試しながら試行錯誤して粘り強く問題を解く練習になります。 デメリットは、どうしても時間がかかってしまうことです。解法が思いつかないと泥沼にはまって問題ひとつに何時間もかけてしまうということが起こり得ます。 同じ問題に時間を掛けすぎるとふと我に帰って「え?もうこんな時間?」となって時間の使い方が下手すぎる自分に嫌気がさし、メンタルに悪影響です。(これは実体験です、、) こうならないためにはどれくらいの時間をかけるか予め決めておくのが良いでしょう。(大問題ひとつあたり30分など) この問題の目的は、先程も少し述べましたが、「入試本番の練習をすること」です。時間を掛けて問題を解くという経験をするのとしないのでは、本番の立ち回りの上手さが大きく変わってきます。 ここまで2つの勉強法について述べてきましたが、これらの大きな違いとは、実践すべき時期です。 前者は、いわゆる【基礎固め】の時期にやるべきです。問題を見て、解法がすぐ思いつくというのが最終目標に据えます。 思いつかない場合はすぐに解答解説を読んで解法をインプットし、次はすぐ思いつくようになることを目指します。 このやり方が最適なのは遅くとも高3秋までです。 そして、高3夏~秋にかけて前者の勉強法から後者の勉強法へと徐々にシフトしていくイメージです。 自分がそれまで貯めてきた武器の使い方を、入試の実際の時間配分に近い形で学んでいきます。 (いわゆるセット演習というやつです。) ここで注意してほしいのが、武器を持っていない状態で武器の使い方を学んでも意味がないということです。 言い換えると、解法のストックがない状態で粘り強く考えても何も思いつけないということです。 解法が何も分からない中で長い時間をかけて考えていても、それは時間の無駄です。 つまり、セット演習は十分に基礎が固まってから行うようにしましょう。そうすれば効果的な演習になります。 長くなってしまい申し訳ないのですが、これが私の見解です。どうか質問者様のお役に立てれば幸いです。 ここまで読んで頂きありがとうございました。
東京大学理科二類 ホルムンクス
11
5
理系数学
理系数学カテゴリの画像
数学について
初めまして。rockyyyと申します。 数学の勉強法において、最も重要なことは解法を見ながら理解することであると思っています。一度間違えた問題の解法を完全に理解しないままにしておくと、同じ問題に何度向き合っても解けないままです。なので解けなかった問題に関しては、解説をよく読み、理解することを重要視すると良いと思います。 具体的にどのようなことをすればいいのかというと、僕は解説を最初から最後まで逐一理解しながら読み進めていくことが良いと思います。 例えば、 「ここで、次のように式変形する。」と言ったような文言が出てきた場合、「なんかわからんけど、そう式変形するのね」と考えるのではなく、「なんのためにその式変形をするのか。その式変形でなんの得があるのか」ということを考えるということです。そうすると、「この式変形をすることで、このような操作が可能になるのか!」とか「こう式変形することでこの法則が使えるようになるんだ!」などの発見があるのではないかと思います。それを繰り返して、その問題の解法を完全に理解すると、その問題に対してだけでなく、似たような問題にも同時に対応できるようになると思います。「ここで、この法則を使いたいから、前学んだみたいにこうすることで・・」と言ったような感じで対応できてくるのではないかと思います。僕はそうして学んだ知識をノートに書き留めておき、チラチラ日常的にみるようなことをしていました。 そうすると、実際に数学において、未知の問題(自分が解いたことのない問題)に対しても、その問題を解くための様々な手法を思いつくようになり、それを使って解くことができるようになりました。成績も伸びて、数学がより楽しく、そして勉強が楽しくなったことを覚えています。 なので、数学の問題を解くことにおいて大事なことは、最初は解けなくても良いので解法を読んで、「こうすることでこの解法が使えるのか」ということや「こうすることでこの公式が使えるのか」となることが重要です。それを自分の言葉でノートなどにまとめておくとさらに良いと思います。僕は問題を解いてわからなかったため空いた空白に色ペンで「このようにすることで、この公式を使って問題が解ける」と言ったようなことを書いていました。そして今でもその手法で数学を勉強しています。 そして、話が変わりますが数学において慣れというものも僕は大事であると思っています。ある程度の知識(基本問題を一通り解くなど)を得た場合は、問題集などでひたすら演習を積んで、解説を読んでわからなかった問題に対する解法を学んで自分の言葉でインプットするということを繰り返すと良いのではないかと思います。そうすることで、この「問題見たことある!]となって、自然に解法が浮かんでくるようになると思います。そうなっていくとどんどん問題が解けるようになってくるので、数学が楽しくなり、また勉強するという好循環を引き起こしてくれると思います。 そして、理系においては数学に比重が大きい入試がほとんどなので、入試において優位に立てるようになると思います。最初の方は、まだ知識も足りていないかもしれないので全然解けないかもしれませんが、辛抱強くこうした勉強法を続けていくと、自然に解けるようになってくると思います。良ければ参考にしてください!!受験応援しています!
大阪大学工学部 rockyyy
12
3
理系数学
理系数学カテゴリの画像
過去問 時間内に解けない
自分で理由を分析できていてとてもいいと思います。 そうですね、分からない問題があったらすぐにとばした方がいいです。「これはできそうだ」と思わない限り基本とばす、という意識でもいいくらいです(自分はそうしてました)。 また、記号問題は後回しにしましょう。最悪、時間がなくても適当にマークすることができます。記述問題は時間ギリギリで適当に書くことが難しいです。 問題文を読んでから問題を解くのはいいと思います。むしろ、問題文を後から読んだ方が時間がかかるのでは? ただ、問題文を先に読むか後に読むかは人によって合う合わないがあるので、自分に合わないと思うなら問題文を後から読んでみてはいかがでしょうか あとは、過去問を何度も解いているとそこの入試の構成が分かってくると思うので、どういう順番で解くかは最初から決めておきましょう。
東京大学理科一類 kkxyxz
5
0
過去問
過去問カテゴリの画像
答え見てもわからない問題
こんにちは!東工大理学院のひろと申します! 数学で、答えを見ても分からない問題がある時の対処法をお伝えしようと思います! まず、教科書に載っている基本事項が抜けていないか確認しましょう。大抵の問題は基本事項を抑えることが出来ていれば、解説を読めば理解出来るはずです!それでも分からないという場合は数学の先生に聞くなどして解決しましょう。その際も、ここまでは理解できたが、その先が分からないという聞き方をするとスムーズで仕事が早いでしょう。 では、教科書に載っている基本事項を抑えるとはどういうことなのかをお伝えします。まず、大切なのは公式を一通りマスターすることです。もちろん公式の丸暗記はよくありません。なぜその公式が導かれるのかを自分で説明できるようになって初めてその公式をマスターできたと言えるでしょう。実際に僕は公式は無理に暗記せず、なんとなくで覚えて全て導出できるようにしていました。あとは、問題を解いていく中で自然に使えるようになります。覚えようとして覚えるのではなく、使っていくうちに覚えるのが効率が良いと思います。また、公式をマスターした後に解く問題は教科書の例題程度で構いません。教科書の例題は舐められがちですが、重要な例題が沢山載っているのでしっかりマスターしましょう。その後は、教科書の章末問題、網羅系参考書といった順番で進めていくと良いでしょう。僕は網羅系参考書でFocusGoldを使っていました。この流れで進めていけば大抵の問題で解説を理解することは可能だと思います。(初見で解けなくても) 大切なのは、丸暗記しないことです。数学は暗記科目ではありません。必ず思考のプロセスがあります。それをおろそかにするといつか難しい問題に当たった時に行き詰まります。そうならないように、日頃から思考のプロセスを意識して数学の勉強をしてください。思考のプロセスとは、何故そのような変形をするのか、何故その公式を使うのかなどのことです。これを説明できるようになると、数学の力がどんどん上がっていくでしょう。 最後に、何故そうなるのかを意識しながら数学の勉強を進めてください。分からないことがあれば基本事項に立ち返って、周りの人に頼りながら頑張ってください!良い結果が出ることを心から祈ってます!!
東京工業大学理学院 ひろ
0
1
理系数学
理系数学カテゴリの画像