UniLink WebToAppバナー画像

複素数の同値性

クリップ(0) コメント(0)
4/2 3:10
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

もちぐるい

高卒 埼玉県 東京大学志望

複素数を2乗する演算は同値変形ですか?

回答

鴨医

京都大学医学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
実数の場合と同じくどちらか-1倍しても同じ式になってしまうので同値ではないですね 例 i^2=(-i)^2

鴨医

京都大学医学部

182
ファン
5
平均クリップ
4.4
平均評価

プロフィール

京都大学医学部医学科に100点差以上で合格しました。 京大模試全国1位を取ったことがあります。 家庭教師募集しています

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

理系数学と文系数学の違いの捉え方
文系数学と理系数学の違いは数3が入ってるか入ってないかだけですよ。数1A2Bの問題は理系の解き方と同じです。 ただ少し慣れないと感じるのはやはり微積の問題とかが原因だと思います。微積は2Bまでの範囲だと、x^n(nは自然数)を微積分する程度しか出ません。なのでこの関数の形以外が出たら微積の問題ではないと考えるべきでしょう。あとは最小、最大を求めるところで、文系だと相加相乗平均を使いがちです。ただこれは文系が、分数の形の式を微分できないからそうしてるだけであって、理系の勉強しているならふつうに微分してといて問題ないです。数3の微分でもちゃんと使えていれば入試で減点されることはありません。つまり数3の微分以外は全部使わないので忘れてもらって構いません。微分は時々使うので覚えておく価値はある、といったところだと思います。 最後まで諦めず頑張ってください、応援しています。
京都大学経済学部 フランダー
7
4
文系数学
文系数学カテゴリの画像
別解のやり方
こんにちは! 結論ですが、問題集に掲載されている別解は全て吸収した方がいいです!なので手を動かすまたは、方針を頭の中で考えることをしましょう! 以下にその理由を記していきます。 理由 別解を多く知っていると本番で正解できる可能性が高くなるからです。 ある問題に対して、解方①と②があるときに、解き方によって、計算量や考える量が変わって来てますが、問題によって①、②のどちらがの方が早く正確にできるかは違うので、両対応することでもし解方①で沼っても、②で解くことでその問題を正解できる可能性が高くなります。 慶應経済では特になのですが、数学は時間が足りないのに高い正答率を求められるので、沼ったらすぐに解方を変えて正解することは足切り突破と合格にとても重要です。 頑張って下さい! 応援しています!! この解答がいいなぁと思ったらファンになって頂けると幸いです。高評価もよろしくお願いします!
京都大学医学部 あきら
2
2
文系数学
文系数学カテゴリの画像
やり直しの仕方
数学の問題をやり直す上で、解答や式変形を一字一句覚えるなんていうことがな必要ないことは言うまでもないことだとおもいます。 なぜなら、数値、条件が全く同じ問題なんて人生でそう出会わないからです。 では、どうするのか?ということですが、僕が意識していた点はその問題の核となる部分を抽出し抽象化、一般化することです。 要は1から10を得てほしいと言えばいいのでしょうか? 具体的に説明すると、立体図形の問題で、ベクトルで解こうとしたけど、なかなか上手くいかなかった。 解答にはベクトルによる解法が書かれておりその解法がなかなかテクニカルで簡潔である。 しかし別解に座標を置いて計算でごり押しする解き方も書いてある。こちらの方法はなかなか、計算量が多そうだ。 こういうことがあったとします。 こういう時に、じゃあテクニカルな式変形を覚えようとしていてはなかなか数学力はつきません。 この問題の復習はいくつかやり方が考えられますが、この問題の核を抽出し一般化とは、以下のようなことです。 1.確かにベクトルのやり方もいい。なので、頭に留めておこう。 2.座標を置くやり方は計算量が多い一方、やっていることは素直である。なので、本当に思いつかなかったら、最終的に座標を置けばいいのではないか? 3.角度といった条件は出来るだけベクトルで扱うのが良さそうだ。 4.交線などは、座標を置き平面の方程式を立てて求めていくのが良さそうだ。 などなど得られることはたくさんあるはずです。 これはあくまで一例ですが、1つの問題から学べることは案外多いものです。 無作為に問題数をこなすのではなく密度の濃い演習をこなすことをお勧めします! あくまで僕個人の意見ですので、何か参考になれば幸いです。
東京大学理科一類 ゆかい
22
1
理系数学
理系数学カテゴリの画像
三元一次方程式 計算ミスを減らすには
こんにちは! たしかに三元一次は煩雑になってミスりがちですね笑 自分もベクトルの大きさの計算なんかはかなり苦手でした。 以下、計算ミスを防ぐために(特に共通テストで)気をつけるポイントをお伝えします! ①ベクトルの成分は縦に書く もしかしたら既にやっているかもしれませんが、ベクトルの成分は縦に並べて書きましょう。現行の教科書などは成分が横『(2,4,3)のような形』で書かれていることが多いですが、これだとミスりやすいです。   2 { 4 }   1 のように縦で成分表示すると文字が入って式が複雑になっても見やすいので、成分同士の方程式や内積の計算をするときのミスがかなり減ります。 (OP→)=x(a→) +y(b→) + z(c→) のような場合も、       a (OP→)={ b }       c のように表しちゃうと計算でミスりづらいです! ②大きな余白や白紙のページを利用する 共通テスト本番ではめちゃくちゃ煩雑なベクトルの計算が出ることは正直あまりないです。しかし、東進などの予備校が手掛けている模試や問題集の中には、計算ゲーのような悪問も含まれているのが現状です。ですので正直に言えば、そういった模試などの悪問でケアレスミスをしてしまっても一喜一憂することは無いと思います。 しかし、工夫をするとすればやはり余白の使い方でしょう。「あ、この計算重いわ」と感じたら、無理して小さい余白や暗算に頼らず、どっしりと構えて大きな余白を探しましょう。その分タイムロスに感じるかもしれませんが、いくらわさんのように京大を目指すレベルであれば、タイムロスよりも安易な判断による失点の方が痛いことは明確だと思います。心に余裕を持って頑張ってください! ③後回しにする 共通テストの数学は、ひらめきゲー/誘導ゲーな要素があります。自分のやり方でやったら死ぬほど難しい式がでてきたけど,誘導にうまく乗っかって解き直したらめちゃくちゃ簡単だった、なんてケースがかなり多いです。また、わからないからとりあえず飛ばして最後に戻ってきたら、頭がクリアになって簡単に解けたというケースも多いです。 問題が変に難しいなと感じた時は、割り切ってスキップして、最後に戻ってくるようにしましょう。仮に計算ミスをしていたとしても、後で見直すと間違いに気づきやすいです。共通テストはとにかく時間と勝負なので、沼りはじめたら終わります。とりあえずスキップしてみることは案外大切な心構えですよ! ①〜③までご紹介しましたが、特に大事なのは③です。 これは共通テストの数学では本当に大切な考え方です!一緒に受験勉強していた東大生の友人たちでさえ、計算が煩雑になったり沼ったりすることがありましたし、そういう時はとりあえず飛ばして最後に戻ってくるのがいいと話していました。 ぜひ参考にしてください! また、これから過去問などで形式に慣れていけば、だんだん計算ミスは減ってくると思いますよ〜!頑張ってください!
慶應義塾大学経済学部 choco
1
1
文系数学
文系数学カテゴリの画像
一橋数学の勉強と共テの兼ね合い
こんにちは! 現在一橋大学社会学部1年の者です! 私は社会学部なので必ずしも商学部と同じ勉強方針ではないかもしれませんが、何か参考になる部分があればと思い答えさせていただきます🙇‍♀️ ちなみに当日の数学の得点率は55%くらいでした。 共テと2次試験の対策(特に数学)の勉強の比率についてですが、共テは慣れの部分があると思うので直前に解きまくれば結構即効性があります。現役の時は冬休みくらいから本格的に共テ演習に移行し、浪人の時は年明けから移行して、それぞれ82%、86%くらいでした。(本格的に移行というのは完全に勉強時間の全てを共テに費やすということです。それまでは共テの対策では、共テのみの科目の復習や授業で解く演習問題、共テ模試だけだったのであまり自分で共テ演習のための時間をとっていませんでした。) ベストの比率は質問者様の状況によりますが、意外と共テは直前でもなんとかなるので、心配なら2次試験の数学をやるので計画的には全然問題ないと思います。共テ演習に移行したら2次試験の対策に戻らずそのまま共テの形式に慣れて本番がいいのかなと思います。(共テと2次試験の対策を並行してやるのは私はやってないのでなんとも言えませんが、中途半端になりそうな気もします)ただ、2次試験で使わない古文漢文や共テ科目の社会、理科基礎の暗記や総復習は、これまでどれほどやってきているかにもよりますが、12月すぎから始めておきましょう。 また、2次試験数学の整数分野について、私は一橋の整数は慣れだと思っています。慣れというのはただ解けば得点が伸びていくのではなく、はじめの発想や途中からの考え方の似たような問題が出やすいからそれらの解法を覚えていくのが良いということです。 私も最終的に3完を目標にしており、整数は取りたい大問の1つでした。前提として、整数問題の基礎ができている必要があります。もしまだ理解が不十分な部分があれば、チャートなどの基本的なレベルの問題を解きましょう。基礎は分かるけど過去問になると解き方が分からないという場合は、過去問を整数に絞って解いて解法を覚えましょう。最初は普通に解いて詰まったら解答を確認して、覚えててもいいのでもう一度解く。数日後にも復習として解き直さなくてもいいので確認する。ひたすら解き慣れていきましょう。 共テ数学も、基礎と慣れが重要だと思っています。こちらはより基礎が重要だと考えています。なぜなら、共テ数学の演習量が多かった現役の時よりも、少なかった浪人の時の方が得点が安定して高かったからです。浪人時は基礎を一からやり直せていたので、数学の基礎的理解が深まっていました。その差が点数の差につながりました。あまり基礎が固まっていないうちに過去問や予想問題演習をしても得点の伸びに限界があると感じるので、焦らず基礎を復習した後、共テの形式に慣れるのが良いと思います。 あくまで私の一意見に過ぎませんが何かお役に立てれば嬉しいです! 勉強頑張ってください📣
一橋大学社会学部 ねこ先生
3
2
文系数学
文系数学カテゴリの画像
到達レベル
文系の数学(難関大の2次)はある意味理系の数学より難しいです。 その理由は、理系は1A2Bの問題に対して数3を手段として使えますが、文系はつかえないことにあります。手持ちの手法が多い方が、そりゃ解きやすいですよね。 特に一橋の問題はほんとに難しいです。 予備校時代に数学の先生が一橋の問題を持ってきたんですけど、全然解けなくて、一橋すごいな…って気持ちになりました。 なので、全部学習するのは当たり前、公式に関しては全て導出するくらいの勢いでいかないと戦えないと思います。 もしまだ応用をやってないのなら、一度本屋とかで文系数学のプラチカを見てみたりするのもありかもしれません。理系プラチカ1A2Bより、文系プラチカのが難しいので… そのレベルに達さないといけない!という意識をしながら勉強に取り組むのはどうでしょうか。 応援してます!
京都大学教育学部 はやしん
8
0
文系数学
文系数学カテゴリの画像
この数学の問題を教えて下さい🙇
自然数を8で割った余りは0〜7になるのは理解できると思います。 そこで、nを自然数とすると、 8で割った余りが 0→8n 1→8n 1 2→8n 2 3→8n 3 4→8n 4 5→8n 5 6→8n 6 7→8n 7 とすることですべての自然数を表すことができます。問題で聞いているのは平方数ということなので、それぞれを2乗すると、 0→64n^2=8×8n^2 1→64n^2 16n 1=8(8n^2 2n) 1 2→64n^2 32n 4=8(8n^2 4n) 4 3→64n^2 48n 9=8(8n^2 6n 1) 1 4→64n^2 64n 16=8(8n^2 8n 2) 5→64n^2 80n 25=8(8n^2 10n 3) 1 6→64n^2 96n 36=8(8n^2 12n 4) 4 7→64n^2 112n 49=8(8n^2 14n 6) 1 となります。 すべて(8n ○)^2という式になる以上、n^2とnの係数は8の倍数になるので、自然数部分である余りの2乗部分を8で割った時の余りが平方数の余りになります。 長くなってすみません。わからなかったらまた質問してください。
東北大学経済学部 りーーー
0
0
理系数学
理系数学カテゴリの画像
共テ数学が取れない
こんにちは。共テ数学は問題構成が特徴的な問題が多いので、記述式の問題とは少し違った解き方をしないといけないと思います。 全統の数学で偏差値65が取れているということは基礎が概ね固まっていると思うので、共テ数学をスムーズに解くコツさえ習得できれば大丈夫だと思います。以下に共テ数学に臨む上で念頭に置いた方が良いと思った事項をまとめました。 ◎共テ数学は「数学」ではなく「情報処理」 まず、共テ数学は「情報処理」を高速で繰り返すものだという認識をもっていただけると良いと思います。残念ながら、一つ一つの問題をじっくり吟味する時間はありません。解く時間が足りない、というのは、最初から一つ一つの問題に丁寧に向き合ってしまっているからではないかと推測しています。もしそうであれば、もう少しラフに問題に立ち向かっても良いかと思います。例えば、ある関数f(x)が最初に定義されていて、唐突に「f(2)を求めてください」と言われていたら「なぜx=2をここで代入するんだろう」と考えるのではなく、直ちに何も考えずにx=2を代入して計算してみてください。「なぜそのような操作が必要なのか」を考える前にとりあえず計算してみる、ということが非常に重要だと思います。一つの問題に対して様々な解法が存在することは多々あり、共テ数学はマーク式なのでその解き方が限定されてしまっています。自分の思いついた解きやすい方法とは違い、一見遠回りに見える方法で解くように指示されていることも少なくはないでしょう。そのような問題構成になっている以上、「解法を理解してから解き始める」というのはどうしても時間がかかってしまいます。とりあえず言われた通りに値を求めて手を動かしていくと、作問者が提示した解法の意味がだんだん理解できてくることが増え、スムーズに問題を解いていくことができると思います。 ◎必要な情報を素早く見つける 上述したように、共テ数学の問題では「なぜ今これを求めなければならないのか」と思うような問題があります。突然何の脈絡もなく値を求めさせるような問題がポンと出てきた時は特に、後の問題でその値を利用するものだと思って解き進めてみてください。直後の問題だったり、次の小問だったりと、多少の差はありますが、その答えを利用する問題が後ろにきっと出てくるはずです。問題文に含まれている不可解な情報についても、「問題文中に意味のない情報は含まれていない」と思って、ただその時はあまり深く考えずに、頭の片隅にそれを入れておくことが重要だと思います。解き進めていくうちに詰まってしまった時は、そのことを思い出して前に戻り、それらがうまく利用できないかを考えてみると打開できることがあると思います。 ◎誘導がなくなったら「前の小問の解法・求めた値を利用」すべし 大問の中で(1)、(2)、(3)とあった場合、(3)に誘導がほとんどついていないことが多いと思います。そういう時は、やはり前の小問に戻って解法を確認し、同じ要領で答えを導き出す、という方法が一番早いことが多いです。また、場合の数・確率の問題などでは、解法だけでなく求めた値も利用すると計算が楽になることもあります。例えば過去に見たことのある問題では、はじめ二種類のカードを無作為に引いて並べ、その並び方を調べる、という小問からスタートし、その後カードを三種類に増やし、引く枚数を4枚、5枚と増やしていくものがありました。そのような問題では、カードが1枚ずつ増えるときは「n枚がn+1枚になったんだから、n枚について考えた前問の答えを使えば追加した1枚についてだけ考えれば良い」という発想で楽に解くことができるようになります。ただし、前問の答えを利用する場合、計算ミスによる雪崩にはくれぐれも気をつけていただきたいと思います。 ◎まとめ もう一度上述した内容をまとめると、 ・とりあえず言われた通りに計算してみる ・不可解な情報、「なぜここでこの値を求めるのか」に要注意 ・誘導が消えたら前問の解法をチェック、必要ならば前問で求めた値を利用 の三つを念頭に置きながら解くことが重要だと思います。繰り返しますが、共テ数学は「情報処理」です。記述式の問題とは種類が違う、ということを踏まえ、問題に取り組んでみてはいかがでしょうか。少しでも参考になれば幸いです。
東京大学工学部 アトラス
33
12
文系数学
文系数学カテゴリの画像
計算練習した方がいい分野
こんにちは。勉強お疲れ様です。 「計算練習」をひたすらにやれ!という分野であれば、間違いなく微分積分です。ですが、私が次に推したいのは実は「複素平面」の練習なのです…。 微分積分について 理系の受験数学で、出ないことはない!と言い張れるくらいにはめっちゃ出ます。ほんとうに。 必ず出る分野ならば、そこは「早く解く」ことができて、さらに「確実に正解する」ことができることが大事ですよね。「早く解く」、「確実に正解する」ともなれば、それに必要なのは計算練習です。微分、積分の練習については以下に記す通りにやるのがオススメです。 微分の練習 ①時間制限を設けて、スラスラ微分する。 (現時点の自分の全速力でかかった時間×0.8で設定してみてください。間に合うまで頑張りましょう。) ②微分後(導関数)の形を覚えてしまう。 (積分でめっちゃ役に立つんです。「微分形の接触(f(g)g'の形)」の際に、「これ、gの微分形じゃん!」ってすぐに見抜けるようになるのです。) 積分の練習 ☆手を動かす前に頭で考える。 (適当に手を動かすのは練習になりません。「この積分は、どの解法で解くのかな…?」「これだ!これならいける!」ってなるまでは手を動かしてはいけません。) 呼吸をするように積分しましょう! (そのために微分の練習が不可欠です。) 複素平面について 実は受験で出たら確実に解けるランキング第1位なんじゃないか?って思っています。複素数の解き方には数パターンしかないんです。出題のされ方もパターン化され切っています。「あ〜こういう系ね。」と分かるくらいまで練習していれば、確実に大問1個分正解できてしまうんです。 「青チャートが一対一になっていて演習量に不満がある」ということでしたが、複素平面に関しては安心してください。青チャートに載っていない解法の問題はおそらく出ません。青チャートの複素平面の問題を全て完璧に解けるように何周も練習することもオススメします! 受験勉強って結構モチベ保つのしんどいですよね。好きなお菓子食べたりするといいですよ。それと、数学に飽きたらほかの勉強しちゃっていいですよ。ほかの勉強が飽きた後に数学に帰ってくればいいんです。 数学の問題集にもいずれ飽きが来ると思います。そうなったら1度過去問に手をつけてみましょう。(〇進の過去問データベースおすすめ!) 過去問演習が1番数学の中で楽しいですよ!
慶應義塾大学理工学部 数学の都
11
3
理系数学
理系数学カテゴリの画像
問題集の進め方
こんちには! 現役東工大生のものです。お答えします! 基本的にはそのやり方でいいと思います!! ただ、関連する単元をやるとなると、かなり時間がかかってしまいます。新数学スタンダード演習自体、けっこうな問題数ですので、効率よく回すために次のようにしたらどうですか? スタンダード演習で間違えた問題は、対応する問題を一対一対応で探す →その問題をやってみる できなかったら基本パターンを覚えられていないということなのでしっかり理解して覚える。 できたとしたら、それはその問題の解法を覚えてしまっているのかもしれません。 しっかり本質の部分を理解し、スタンダード演習の問題は「どう応用しているのか」、「どこに着目すればそのパターンだと気付けるのか」を意識して、復習すると、受験のときに必要な応用力が付いてくると思います! 大事なことはできなかった問題が、なぜできなかったのかをしっかり考えることです! 知識不足なのか、ここを見て気づかなきゃいけなかったのかといった具合です。 数学の問題は必ずヒントがあります。そのヒントから今までの知識をどれだけ引っ張り出して正解までたどり着けるかです。 やれば必ず結果はついてくるので頑張ってください!! 目指せ東工大👊
東京工業大学第五類 あっちゃん
9
2
理系数学
理系数学カテゴリの画像