UniLink WebToAppバナー画像

「数学を根本的に理解するとは」

クリップ(51) コメント(1)
11/19 19:13
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

さや

高2 山梨県 筑波大学志望

数学を根本的に理解するとは、どういうことですか?どうすれば出来ますか? 私は高2の文系です。数学1A2Bを一次で使います。青チャート(家にあるだけで全く活用出来ていない)と4STEPを使って数学を学習しています。定期テストや模試では思うような結果は出ていません。ワーク(4STEP)は何度も解いているのですが、解いている時もその場では理解しつつも、1週間後にまた解けるかと言われたら解けない感じで、解くことに自信が持てないです。いくらワークを丁寧にやっても自分の頭に取り込めていないです。 どうしようかといろいろ調べたりしたのですが、数学を根本的に理解するように心がけるなどと出てきてどういうことか分かりません。どうしたらいいか分かりません。数学を得意にしたいです!!!!数学は嫌いではないんです...どうすればいいかアドバイスでもいいのでください。よろしくお願いします。

回答

回答者のプロフィール画像

tomato-juice

大阪大学基礎工学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
数学を根本的に理解する。 という勉強方法は、言葉で説明すると少し難しいので、ほんの少しだけここでやっていみたいと思います。 例えば、弧度法の中で「ラジアン」というのが出てくると思います。これは、「2π = 360°」を基準に考えよう。という風に習ったと思います。このラジアンを使って、扇形の弧の長さを求める公式で、「L = rθ」というのがあります。 皆さんの中に、この式を覚えているだけになっていて、意味を理解していない方はおられるでしょうか? これは、小学校の時に習った、「円周の長さは2πr」というものを使っています。 どういうことかと言うと、「円を4分割した形である扇形のこの長さを求めよ。」という問題があった時、 小学校で習った式を使うと、求めるのは円周を4等分した長さなので、 ¼ × 2πr = ½πr ラジアンを使って解くと、中心角 90° は、ラジアンでは ½π なので、L = r × ½π = ½πr よって、答えはどちらの式を使っても、½πr になりました。 中学の知識では、L = 2r × π × 角度 / 360° 高校数学では、L = rθ どちらの公式でも求められますが、公式で見ると、弧度法を使った方が分かりやすいですよね。 という感じです。
公式をただ覚えるだけでなく、意味を理解しながら使えるようになる。ということが、根本的に理解するということになります。 先程の例で言うと、ラジアンというものはどういう意味を持つのか。ラジアンを使えるようになると、計算がどう変わるのか。というのを理解しておく必要があります。 これは、ほかの公式でも当てはまります。 例えば、加法定理の公式: sin(a+b) = sin(a)cos(b) + cos(a)sin(b) これを使って2倍角の公式を作ります。 sin2a = sin(a+a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) 例えば、等差数列の和の公式: S = ½n(a + l) (a:初項、l:末項、n:項数) これに、末項:l = a + (n - 1)d (d:交差) を代入すると、 S = ½n(2a + (n - 1)d) これが教科書に乗っている和の公式の2つになります。 こんなん知ってるよ。という方もいるかもしれません。ただ、これが数学を根本的に理解するということになります。 もう少し難しい話に行くと、 ・解の公式ってなんであの形なの? ・平方完成ってなんでするの? ・円の方程式の意味は? ・微分と積分の関係は? ・ベクトルって何? などなど…… キリがないので、この辺りにしておきますが、 要するに、公式の意味を理解することで、数学を本質的に理解しよう。という訳です。 しかも、これらは全てほとんどの教科書に載っています。理解しようと思うと、教科書を読めば大体のことが分かります。 数学を根本的に理解すると、問題を解くときに答え方がパッと思いつきやすくなると思います。さらに、公式の丸暗記では、時間が経つと忘れてしまうかもしれませんが、理論的に覚えていると、脳の構造的にも忘れにくくなるということもあります。なので、この勉強方法をオススメする方はたくさんいますし、私もこのやり方で勉強しました。 ただ、人によっては向き不向きがありますので、これを絶対に使った方がいいとは私は言えません。 実際に、私もこれで苦手だった数学が、だんだんと解けるようになったので、興味があれば、是非やってみてください。 長文失礼しました。是非参考になればと思います。
UniLink パンフレットバナー画像

コメント(1)

さやのプロフィール画像
さや
11/20 22:19
公式を理論的に覚えるのですね! 今まで私は公式をただ暗記していました。だからいつも問題を解く時に解き方がパッと思い浮かばないのかもしれないです... ありがとうございました♪ 参考になります‼︎

よく一緒に読まれている人気の回答

「数学を根本的に理解するとは」
数学を根本的に理解する。 という勉強方法は、言葉で説明すると少し難しいので、ほんの少しだけここでやっていみたいと思います。 例えば、弧度法の中で「ラジアン」というのが出てくると思います。これは、「2π = 360°」を基準に考えよう。という風に習ったと思います。このラジアンを使って、扇形の弧の長さを求める公式で、「L = rθ」というのがあります。 皆さんの中に、この式を覚えているだけになっていて、意味を理解していない方はおられるでしょうか? これは、小学校の時に習った、「円周の長さは2πr」というものを使っています。 どういうことかと言うと、「円を4分割した形である扇形のこの長さを求めよ。」という問題があった時、 小学校で習った式を使うと、求めるのは円周を4等分した長さなので、 ¼ × 2πr = ½πr ラジアンを使って解くと、中心角 90° は、ラジアンでは ½π なので、L = r × ½π = ½πr よって、答えはどちらの式を使っても、½πr になりました。 中学の知識では、L = 2r × π × 角度 / 360° 高校数学では、L = rθ どちらの公式でも求められますが、公式で見ると、弧度法を使った方が分かりやすいですよね。 という感じです。 公式をただ覚えるだけでなく、意味を理解しながら使えるようになる。ということが、根本的に理解するということになります。 先程の例で言うと、ラジアンというものはどういう意味を持つのか。ラジアンを使えるようになると、計算がどう変わるのか。というのを理解しておく必要があります。 これは、ほかの公式でも当てはまります。 例えば、加法定理の公式: sin(a+b) = sin(a)cos(b) + cos(a)sin(b) これを使って2倍角の公式を作ります。 sin2a = sin(a+a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) 例えば、等差数列の和の公式: S = ½n(a + l) (a:初項、l:末項、n:項数) これに、末項:l = a + (n - 1)d (d:交差) を代入すると、 S = ½n(2a + (n - 1)d) これが教科書に乗っている和の公式の2つになります。 こんなん知ってるよ。という方もいるかもしれません。ただ、これが数学を根本的に理解するということになります。 もう少し難しい話に行くと、 ・解の公式ってなんであの形なの? ・平方完成ってなんでするの? ・円の方程式の意味は? ・微分と積分の関係は? ・ベクトルって何? などなど…… キリがないので、この辺りにしておきますが、 要するに、公式の意味を理解することで、数学を本質的に理解しよう。という訳です。 しかも、これらは全てほとんどの教科書に載っています。理解しようと思うと、教科書を読めば大体のことが分かります。 数学を根本的に理解すると、問題を解くときに答え方がパッと思いつきやすくなると思います。さらに、公式の丸暗記では、時間が経つと忘れてしまうかもしれませんが、理論的に覚えていると、脳の構造的にも忘れにくくなるということもあります。なので、この勉強方法をオススメする方はたくさんいますし、私もこのやり方で勉強しました。 ただ、人によっては向き不向きがありますので、これを絶対に使った方がいいとは私は言えません。 実際に、私もこれで苦手だった数学が、だんだんと解けるようになったので、興味があれば、是非やってみてください。 長文失礼しました。是非参考になればと思います。
大阪大学基礎工学部 tomato-juice
51
3
文系数学
文系数学カテゴリの画像
三角関数の変形の使い分けについて
質問者様は高2ということなので、数Ⅱまでの範囲で回答させていただきます。 【三角関数を変形する目的】 まず、三角関数を変形するのは必ず目的があります。 ①三角関数を含んだ方程式・不等式を解くため ②三角関数を含んだ関数の最大値・最小値を求めるため などがよくある目的ですね。 《①について》 方程式や不等式ははじめに因数分解で攻めます。 (因数)(因数)=0 といった形になれば、あとは簡単ですね。 因数分解しない場合は②の考え方をそのまま借りましょう 《②について》 sinのみ、cosのみ、tanのみ、の式に帰着させます。そしたら見たことある関数(一次関数、二次関数など)になります。 そのための手段として *三角関数の相互関係 *加法定理を用いた公式 などが存在します。 --------- 【質問主様の弱点と思われるところ】 数Ⅱの三角関数に入ってからうまくいかなくなった高校生は加法定理を用いた公式につまづいている人が多いです。 公式自体覚えていても、問題でうまく活用出来ないことがよくあります。 先程の項目で書きました、変形のそもそもの目的を意識して演習してみてください。 使い分けパターンは青チャートなどのテキストに詳しく記載されています。これを身につけることが大切です。 パターンを繰り返しの演習で身につける際に、 「因数分解を目指す!」 「sinのみ、cosのみ、tanのみの式を目指す!」 という意識を持って取り組むことで、何故その式変形を使うのかが体感出来ます。 --------- 【最後に】 問題のゴールから逆算して考えることが数学においては大切です。 初めから逆算して考えることなんて出来ないから、パターンを演習によって身につけるわけですが、ゴールを意識してパターンを身につけなければ、何のためのパターンなのかがわかりません。 必ず、式変形の目的を意識した演習を心掛けてください。
京都大学工学部 クウルス
26
2
理系数学
理系数学カテゴリの画像
慶應の商学部をA方式で受けることについて。
文系において数学が使えるというだけで、かなり有利に働きます。 慶應商学部においては、B方式だと倍率が10倍近くあるんですが、A方式だと倍率は3倍ほどです。慶應商学部を第1志望に考えるなら、A方式で受ける方が断然可能性が高いです。 たしかに、A方式だとライバルとなるのは、東大・京大・一橋の人たちです。ですが、直接的なライバルとしては、そういう難関国立に落ちる人達との戦いです。そこまで恐れる必要はないです。また、国立を受ける人達の特徴として、英数にはかなり力を入れるんですが、社会科目は後回しにしがちです。さらに、国立受験となると、社会の記述対策をするため、私立の社会で見られる細かい知識をインプットするということはあまりしてません。要するに、国立を受ける人は、英数のレベルはかなり高いですが、社会科目はそんなに高くないです。もっというと、早慶レベルの社会の知識をつけてる人はそんなにいません。 そして、A方式の配点は、英語200点・数学100点・社会100点です。ですから、戦略としては、英語は国立受験者と同じレベルに持っていき、数学はそこそこで、社会で国立志望の人に 上回るって感じでいくのが懸命でしょう。 自分は国立志望でしたが、数学はそんなに得意でなはありませんでした。逆に世界史は早稲田・慶應にもしっかり対処するレベルまで持っていってたのが、それが功を奏したのだと思います。 国語に関してですが、国語をやらないと併願校が少なくなるのがネックですよね。自分も英数社で受けれる学校はほかに知りません。強いて言えば、まずは、慶應経済A方式が英数小論で受けられるます。しかし、ここはかなり商学部に比べてもう一段階高いレベルの戦いにはなってきます。あとは、marchで数学使える学部が狙い目になってきます。慶應商学部でしっかり得点とれるレベルになってれば、marchレベルの数学はどこでも満点狙えるはずです。marchレベルはほんとに簡単です。そして、4科目受験にすれば、数学で国語の分を取り返せるだけ点を取れると思います。 国語を全くやらないのは、併願校を考える上で得策ではないと思います。国語は少しでもやってれば、多少の点数が見込める可能性がある科目です。 まだ高2ということなので、まずは英数に力をいれつつ、国語もしっかりやっておくという風にした方がいいと思います。
慶應義塾大学商学部 タイ
30
0
受験校選び
受験校選びカテゴリの画像
証明や導出がすごい気になってしまう
三味線さん、はじめまして。 お気持ちはすごく分かります。 たしかに解答の細かいところに疑問を持ったり、その都度公式を導出していると参考書の進むペースは遅くなってしまいますが、その分、質は高くなると思うので全然良いことだと思いますし、むしろそうするべきだと思います。 よく言われる「数学は理解」という言葉は、なぜその公式を使ったのか、なぜその解法で解くのか、なぜその変換を行うのか、もっと細かいことで言うと、なぜその順に解答を記述するのかといったことを理解することです。 「数学は暗記」という言葉もたまに聞きますが、これは単純に英単語みたいに暗記すると言うことではなくて、どうしてこの解法を使うのかを理解した上でどうゆう問題が出たらどの解法を使うのかを暗記すると言うことです。 仮に理解の過程を飛ばして暗記だけすると、少し問題の形が変わっただけで解法が思い浮かばないということになってしまいます。 そして理解を深めるためには、三味線さんのように細かいところにも疑問を持って問題を解くのが一番の近道です。公式は導出ができる方が理解度ははるかに上がりますし、たまにある公式の導出に基づいた問題なんかも出題されることもあります。 また質問文中のことで触れると、なぜ置換積分はこうゆう形でするのか、一次独立とは何か、解答に使われている言葉の意図、こういったことに疑問をもって考えるのはとても良いことだと思います。確認しても忘れてしまうのは人間なので仕方ないことで、確認してその時に理解したことをノートなんかに纏めておきましょう。次に同じような疑問が出た時にノートを見返すことで少しずつ定着して力になっていくはずです。 私の場合だと2.3回では定着せず、5回とか10回その都度見返すことで定着し始めた感じだったので、忘れているから力になっていないと焦らずに、自分のペースで頑張ってください! 応援しています☺️
京都大学工学部 さかさか
5
2
理系数学
理系数学カテゴリの画像
公式の意味を理解し、導けるようにすることに時間をかけるべきか
こんにちは。公式の理解と導出についての質問ですね。 簡単にいうと、理解するべきものと覚えてしまえばよいものがあります。 数学は暗記科目ではないですが、例えば中学校で習った二次方程式の解の公式など、覚えなくては問題が解けないものも多くあります。 しかし、こういうものはたいてい問題を解き続けていれば自然と覚えてしまうものなので、わざわざ暗記しようと気負う必要はありません。その分問題を解いて欲しいです。 導出すべきものとしては、例えば半角の公式や3倍角の公式です。2倍角は自然と覚えると思いますが、上記2つの公式は使用頻度が低いため覚えるよりは毎回導出す?のをオススメします。 導出の手順は教科書や参考書に載っています。見ながらノートに書くでも良いので一度は導出の流れを掴んで欲しいです。 ちなみに、難しいですが導出を頭の中だけでするのは計算練習や頭の体操とても良いのでオススメです。 導出すべきものとそうでないものの見分け方としては、教科書や参考書に導出方法が載っていなくて、かつ使用頻度が高いものは導出せず、覚えてしまう。そよ逆のものは導出過程を一度は経験しておくという形で良いと思います。 以上です。参考になれば幸いです。
北海道大学水産学部 しみしみ
11
0
理系数学
理系数学カテゴリの画像
物化で学校でやったことを忘れることはどうすれば良いか
①模試での理科対策について まず模試の捉え方ですが、受験勉強をしている中で、定期的にある試験を受け結果をもらい、同じ目標を持つ人たちの中での自分の位置を把握するものが模試です。 なので、模試の対策をするという考えは好ましくないかなと思います🙇‍♀️ 普通に受験勉強をして、それが身についていれば模試の結果はよくなります! ②学校で習ったことを忘れないために 「学校で」習ったことというより、「自分で学んだこと」を忘れないようにするための対策として考えました🙇‍♀️ 自分で問題を解いたり、復習することが大事だと思います。 私は、高2のとき物理化学は学校でもらった「セミナー」を使って、学校で習った範囲を自分で進めていました。定期試験の前にその範囲を1周はするようにしていました。 その結果、高2の時点で、化学はセミナーの有機を2周、理論完璧、無機一応1周くらい 物理はセミナー力学部分が完璧、電磁気理解&基本問題はできるようになっていました。 また夏期講習、冬季講習などで塾にいき、学校で習った範囲と被った範囲を扱っていたので、テキストの問題を解説を見ずに解けるようになるまで解き、それが復習にもなり知識が定着したと思います🙇‍♀️ 塾に行かなくとも、長期休みの間に、問題集のつまずいた部分を自力でできるようになるまでやり直す、自分で選んだ参考書を読むなどをすると良いと思います! 少しでも参考になれば嬉しいです🙇‍♀️
東北大学医学部 no_cloud
36
11
不安
不安カテゴリの画像
模試の物理が出来るようになるには
慶應義塾大学理工学部の3年生です。 受験は物理だけを頼りに戦っていました。  まず覚えた公式が自分の直感と照らし合わせて納得のいくものかどうかを考えてみてください。もしそうでなければその公式の正体が見えてくるまで考えまくってください。  具体的には、公式をより簡単な自分の知ってる公式で表せられないかを考えてみてください。さらにこれにはどんなに時間をかけてもいいです。むしろここに物理の勉強時間の多くを割いて物理の世界観に入り込むことが大事です。  今まで覚えてきた多くの公式が簡単な式の組み合わせであること、形を変えただけであることに気づいたらこっちのものです。だんだんと「この公式はこれとこれですぐ導けるから覚えなくていいや」となってきます。さらに、そうやって時間をかけて何回も考えているうちに、自分で公式を導く必要すらなくなります。それは今までは公式という小手先の対処法を与えられていただけだったのが、物理の根本を知ってしまうことでその対処法を当然のように考える力が付くからです。  例えるならば、医療の現場で、「この症状の時はこの治療法」というように全ての症状に対して個別の道具と方法を覚え込んだ人は、いざ患者を前にした時に、「どの道具でどのようにすればいんだっけ」というように悩んでしまいます。さらに少しでも違った症状を見た時に対処できません。それに対して長年人の体について研究して熟知している人はどんな症状を見てもその根本の原因が分かるため、当然対処法もその場で考えることができます。  自分も最初はこんないろんな公式覚えられるわけない、ましてやそれらを状況ごとに使い分けるのは無理だと思ってました。ただこれをやっているうちに最終的には、力学で言うと物体が動いているかそうでないかで、運動方程式を使うか力の釣り合いを使うかの2択を考えるだけでほとんどの問題を解けるようになりました。今までは一本の木にたくさんついている葉っぱからどれを使うか決めていたのが、それをつけている枝を選ぶようになり、最終的には2本の太い幹だけを見れば良くなるようなイメージです。  自分は問題集を解こうとして解けなくて解説を聞いてよく分からず次の問題にいくという勉強にうんざりして、紙とペンだけでこのようなことばかりしていました。さらにある公式について腑に落ちたなと思ったら、それを使って身の回りの現象を例にして、具体的な重さや長さなどの数値を与えて考えてみたりしてました。  下手な文章でごめんなさい。とにかく物理を小手先で解くのではなく、物理そのものを自分のものにするつもりで長い時間だらだらと物理について考えてみてください。どこかで新たな発見があって、考え方がガラリと変わることがあると思います。頑張ってください。
慶應義塾大学理工学部 ゆー
27
7
物理
物理カテゴリの画像
数学が全然できるようにならない
こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!
大阪大学経済学部 RIZ
34
8
文系数学
文系数学カテゴリの画像
文系数学で高2のうちにやっておくべきこと
私も青チャートを使っていました! 基本的に、高2だろうと高3だろうと勉強法は変わりません。 青チャートが解ければ、他の問題は怖くありません。 以下、勉強の極意です。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
110
4
文系数学
文系数学カテゴリの画像
数学の初見の問題を解くことが出来るようにするには
レベルの高めの問題は1週間後ではなく、短期間で何回も復習をして定着させましょう。 それはさておき、初見の難しい問題の解き方ですが、解き始める前に求めなければいけないのは何か?その求めたいものを出すには、どんな道具が使えそうか?といったことを考えながら解く習慣をつけていくのがいいかと思います。 どんな道具が使えそうかという点に関しては、数をこなして、問題のパターンを多く知っておくということが一番な気がします。
京都大学文学部 かささぎ
47
1
文系数学
文系数学カテゴリの画像