3:I[9275,[],""] 5:I[1343,[],""] 6:I[4080,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],""] 7:I[231,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],""] 8:I[212,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"default"] 9:I[8629,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"SearchButton"] a:I[942,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"AdviserRegistrationButton"] b:I[390,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"ExamineeRegistrationButton"] c:I[8001,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"NavigationBarCategoryTabItem"] d:I[2738,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"ConsultingButton"] e:I[2362,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"default"] f:I[490,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"default"] 10:I[3578,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"default"] 11:I[4404,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","180","static/chunks/180-fa9585ba28b3b839.js","185","static/chunks/app/layout-59f72bdcd6082306.js"],"GoogleAnalytics"] 4:["id","31GOs30BTqPwDZPuY3XY","d"] 0:["r_E0tpHHdAzMG78fqwzpT",[[["",{"children":["advice",{"children":[["id","31GOs30BTqPwDZPuY3XY","d"],{"children":["__PAGE__?{\"id\":\"31GOs30BTqPwDZPuY3XY\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["advice",{"children":[["id","31GOs30BTqPwDZPuY3XY","d"],{"children":["__PAGE__",{},[["$L1","$L2"],null],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children","$4","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children","advice","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}],null]},[["$","html",null,{"lang":"ja","children":[["$","$L6",null,{"async":true,"src":"https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-6167616270861177","crossOrigin":"anonymous"}],["$","body",null,{"className":"__className_36bd41","children":[["$","nav",null,{"className":"w-full bg-white text-white py-2","children":[["$","div",null,{"className":"relative h-16 mb-2","children":[["$","div",null,{"className":"absolute w-full flex items-center justify-center","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":200,"height":63}]}]}],["$","button",null,{"className":"absolute top-0 bottom-0 right-4 text-text","children":["$","$L9",null,{}]}]]}],["$","div",null,{"className":"flex justify-center space-x-2 mb-2","children":[["$","$La",null,{}],["$","$Lb",null,{}]]}],["$","div",null,{"className":"flex justify-center bg-primary","children":["$","div",null,{"className":"flex space-x-1 items-center overflow-x-auto hidden-scrollbar","children":[["$","$Lc","トップ",{"name":"トップ","selected":true}],["$","$Lc","現代文",{"name":"現代文","selected":false}],["$","$Lc","古・漢",{"name":"古・漢","selected":false}],["$","$Lc","数学",{"name":"数学","selected":false}],["$","$Lc","英語",{"name":"英語","selected":false}],["$","$Lc","理科",{"name":"理科","selected":false}],["$","$Lc","日本史",{"name":"日本史","selected":false}],["$","$Lc","世界史",{"name":"世界史","selected":false}],["$","$Lc","やる気",{"name":"やる気","selected":false}],["$","$Lc","時間",{"name":"時間","selected":false}],["$","$Lc","過去問",{"name":"過去問","selected":false}],["$","$Lc","模試",{"name":"模試","selected":false}],["$","$Lc","AO・小論",{"name":"AO・小論","selected":false}],["$","$Lc","ランキング",{"name":"ランキング","selected":false}]]}]}]]}],["$","$L3",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","div",null,{"className":"px-4 py-4 text-center","children":[["$","h1",null,{"className":"text-4xl mb-4","children":"404"}],"指定されたページが見つかりませんでした。ページが削除または移動された可能性があります。"]}],"notFoundStyles":[],"styles":null}],["$","div",null,{"className":"fixed bottom-4 md:bottom-8 right-4 md:right-8 z-10","children":["$","$Ld",null,{}]}],["$","footer",null,{"className":"bg-gray-100","children":[["$","div",null,{"className":"px-4","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full","children":[["$","$Le",null,{"sx":{"backgroundColor":"inherit","zIndex":1},"elevation":0,"children":[["$","$Lf",null,{"sx":{"paddingLeft":0,"paddingRight":0},"className":"font-semibold","expandIcon":["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M7.41 8.59 12 13.17l4.59-4.58L18 10l-6 6-6-6 1.41-1.41z","children":[]}]]],"className":"$undefined","style":{"color":"$undefined"},"height":"1em","width":"1em","xmlns":"http://www.w3.org/2000/svg"}],"children":"UniLink(ユニリンク)とは"}],["$","$L10",null,{"sx":{"paddingLeft":0,"paddingRight":0},"children":["$","div",null,{"className":"text-sm font-normal leading-relaxed","children":["UniLink(ユニリンク)とは、受験生会員数13万人以上、相談投稿数10万件以上を有する国内最大級のハイレベル受験質問プラットフォームです。",["$","br",null,{}],["$","br",null,{}],"全ての受験生が、受験の悩みや不安を無料で現役難関大生に質問できます。また、過去に投稿された全ての質問と回答を閲覧することもできます。",["$","br",null,{}],["$","br",null,{}],"質問に回答するすべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。回答者の審査では、さらに実際の回答をUniLinkが確認して、一定の水準をクリアした合格者だけが登録できる仕組みとなっています。",["$","br",null,{}],["$","br",null,{}],"UniLink利用者の80%以上は、難関大学を志望する受験生です。ライバルから刺激を得て、合格者の知恵を1つでも多く吸収し、ハイレベルな受験対策を行いましょう。"]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式SNSアカウント"}],["$","div",null,{"className":"text-sm font-normal leading-relaxed mb-2","children":"最新回答を短く要約してお届けします。"}],["$","div",null,{"children":["$","div",null,{"children":[["$","a",null,{"href":"https://twitter.com/unilink_study?ref_src=twsrc%5Etfw","className":"twitter-follow-button","data-show-count":"false","children":"@unilink_studyをフォロー"}],["$","$L6",null,{"async":true,"src":"https://platform.twitter.com/widgets.js"}]]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"py-4","children":[["$","div",null,{"className":"font-semibold","children":"UniLink公式スマホアプリ"}],["$","div",null,{"children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/iomezpbt","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"max-w-sm rounded"}]}]}]]}],["$","div",null,{"className":"border-b"}],["$","div",null,{"className":"flex flex-wrap items-center gap-4 py-4","children":[["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"会社概要"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/contact/","children":"お問い合わせ"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/","children":"広告出稿"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/documentdl/","children":"媒体資料ダウンロード"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/terms/","children":"利用規約"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/privacypolicy/","children":"プライバシーポリシー"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"https://about.uni-link.co.jp/tokutei-law/","children":"特定商取引に関する表記"}],["$","div",null,{"className":"footer-divider","children":"|"}],["$","$L7",null,{"className":"footer-button","href":"/sitemap.xml","children":"サイトマップ"}]]}]]}]}],["$","div",null,{"className":"bg-primary px-4 pt-4 pb-20","children":["$","div",null,{"className":"max-w-5xl mx-auto w-full flex justify-between items-center","children":[["$","div",null,{"className":"rounded overflow-hidden","children":["$","$L7",null,{"href":"/","children":["$","$L8",null,{"src":"/images/header.png","alt":"UniLinkヘッダー画像","width":100,"height":32}]}]}],["$","div",null,{"className":"text-white text-sm","children":"©UniLink, Inc."}]]}]}]]}]]}],["$","$L11",null,{"gaId":"G-ELSR1M4E8Q"}]]}],null],null],[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/830a58250615b22c.css","precedence":"next","crossOrigin":"$undefined"}]],[null,"$L12"]]]]] 12:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"数3の予習について | UniLink"}],["$","meta","3",{"name":"description","content":"進研模試で偏差値63ぐらいで九州大学の工学部を志望している高校2年生です。これから数学3の予習をしようとしているのですが、数学2bや1aの復習もしたいと考えています。いまから数学3の予習はすべきだと思いますか? また、すべきならどれぐらいの期間で何をやった方がいいですか?ちなみにいま持っている数学3の参考書はフォーカスゴールドで、スタディーサプリもやっています。"}],["$","link","4",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"48x48"}],["$","link","5",{"rel":"icon","href":"/icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","link","6",{"rel":"apple-touch-icon","href":"/apple-icon.png?2c0dc65a59843333","type":"image/png","sizes":"180x180"}],["$","meta","7",{"name":"next-size-adjust"}]] 1:null 13:I[3903,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"ClientInfo"] 14:I[2798,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdUnderConsultation"] 15:I[2582,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdviserInfo"] 16:I[7060,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdUnderAdvice"] 17:I[3194,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"CommentPostButton"] 19:I[3866,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdOnAdviceList1"] 1b:I[3866,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdOnAdviceList2"] 1c:I[3866,["51","static/chunks/795d4814-710d199cb1f51304.js","183","static/chunks/183-141f39fb5cb93742.js","23","static/chunks/app/advice/%5Bid%5D/page-26686d89cc5a4cf8.js"],"AdOnAdviceList3"] 18:Tfb3,こんにちは。以下私の考えを述べさせていただきます。参考になるところがあれば吸収してください。 まず、いつまでに数学を終わらせるべきかと言うことですが、質問者さんの予定通り、高2の間に終わらせることができれば十分だと思います。もちろん、早いに越したことはないですが、他の教科との兼ね合いもあるでしょうし、高2の間に数3まで一通り終わっていれば、少なくとも不利になることはないと思います。速く終われば高3になる前の春休みから受験に本腰を入れて取り込めます。高3の夏前までに基礎を終わらせて(過去問に入れる程度まで)、夏休みから過去問を触れれば十分早いペースで勉強に取り組めていると思います。夏に基礎固めみたいなものをして、秋や冬から過去問に取り組む人も大勢いますからね。冬は共通テストの勉強も少しはやらなければいけないことや、他の教科も仕上げていかなければならないことも考えると、夏、遅くとも秋にバリバリ過去問に取り組めたら十分順調だと思います。ですから、とりあえずの目標としては、高3になるまでに数3まで基本的なところは終わらせることで良いかと思います。余裕があれば前倒ししていけば良いでしょう。 先取りの方法ですが、やはり問題を解いて慣れるのが一番だと思います。従って、おっしゃるようにフォーカスゴールドを解きすすめるので良いと思います。フォーカスゴールドの中には難易度の高い問題もあると思いますが、そこまで神経質に完璧にせずとも、まずは基本的なところを抑えれば良いと思います。いずれ演習を積むにつれて難しい問題も少しずつ理解できるようになると思います。そのような問題に躓いていては、効率が悪いですから、難易度の高い(星4)の問題などは一旦飛ばしてどんどん進みましょう。特に、数3などは微分積分などで扱う関数は難しいですが、微分して増減表、グラフを書いて面積、最大最小、などやってることは数2と変わりません。ですから、演習を積めば積むほど伸びていくと思います。 わからない部分があれば、教科書の簡単なところに戻ったり、先生に質問するなどすれば良いと思います。自分で考えることも大事ですが、基本的な部分であまりに思い悩むのも効率が悪いです。特に独学ということであれば、わからないことがあったときにいつでも相談できる相手(学校の先生でも塾でもなんでも良いです)を見つけておくと良いと思います。今はネットで調べればなんでも出てくる時代ですから、インターネットやyoutubeなども積極的に利用すれば良いと思います。 最後に予定の改善点ですが、この予定通り進めることができたらかなり有利に戦えると思います。ですから、自信を持って取り組むと良いと思います。先取り学習も大事ですが、その間に数1数2の内容がわからなくなってしまっては本末転倒です。したがって、先取り学習と並行しながら、既習範囲の応用問題なども定期的にこなしていけば良いと思います。既習範囲の演習が積めていれば、模試などでも得点しやすいでしょうから、良いモチベーションになると思います。もちろん、先取りは模試の結果にはすぐには現れないでしょうが、大事です。 今の自分に足りないものを考えて、効率よく学ばれると良いと思います。頑張ってください。応援しています。1a:Tbec,初めまして。九州大学農学部の者です。 数Ⅲの順番は、関数→極限→微積→複素数平面→2次曲線の順番がいいと思います。 私の高校がこのような順番で進んだというのもひとつの理由ですが、出題頻度・重要度の観点からしてもこの順番が良いと思ったからです。 入試において最もよく出題されるのは微積です。複素数平面と2次曲線が試験に出ないという訳ではありませんが、微積に比べると出題パターンが決まっており、あまり出題されにくいです。(大学によると思うので、過去問を見て確認するのが1番だと思います。ここでは出題されにくいと仮定して進めていきます) 微積をやるには関数、極限の知識が必要になります。一部複素数平面や2次曲線の知識を必要とする部分もありますが、あまり多くはありません。逆に、微積の知識を使って複素数平面や2次曲線を解くと簡単だったという問題は多くあると思います。 微積は数Ⅲの中で1番負担が大きいと感じました。そのため、理科や社会の内容が重くなる前にやっておいたらいいと思います。 ここまで数Ⅲの順番をご紹介させていただいたのですが、質問者さんの話を見る限り、もう少し復習をし、夏休み頃から数Ⅲを始めたらいいと思います。 1番の理由は、数Ⅲは数ⅠAⅡBの知識が必須であるため、まずはこの知識を確実に身につけることが大切だと思うからです。数Ⅲの微積は数ⅡBの微分・積分の知識の上に成り立っている分野です。そのため、数ⅡBの知識がないと、数Ⅲで新しく学習することが上手く身につかないと思います。 また、その他の理由としては、質問者さんが志望校としている名古屋大学を含め、多くの大学はセンター試験(共通テスト)の点数を無視できないからです。名古屋大学理系学部では、センター試験の得点割合が30~40%ほどあります。もちろん2次試験で得点を取れば良いという話にはなりますが、ボーダーぎりぎりで2次試験を受けると、緊張や不安などで自分の実力が思うように出せないかもしれません。センター試験(共通テスト)で他の受験生と差をつけておくことで2次試験で実力以上のものが出せると思います。 端的に言うと、数ⅡBの復習を夏休みが始まるまでに終わらせ、東進の共通テスト本番レベル模試で7割~8割ほど取れるようになってから数Ⅲを始めればよいと思います。 長くなってしまいましたが、数学が得意というのは入試において武器になるため、穴を作らないように復習をしつつ応用まで頑張ってください。応援しています!!1d:T13f3,こんにちは!RIZと申します。 問題集の問題は解けるけれど初見の問題では解けなくなるということですね。 まずとても当たり前の話をしますが、数学は問題文から解答を考えなければなりません。現在の、問題集の問題は解けるけれども初見の問題では手が止まってしまうというのは、単に問題集の答えを覚えているだけに他なりません。そこで、今回は初見の問題でも解けるようにするためにはどのようにすれば良いかについてお話しします。 前提として、数学の公式や定義はしっかり学習しているとします。もし質問文に書かれている数学用語というのがこうした公式や定義であるなら、定義はまずしっかり覚えてください。そして公式についてはできれば丸暗記するより、導出できるようにしたほうが良いです。ただもう時間があまりないので最悪丸暗記でもいいですが、導出できるようにすることで、なぜその公式が成り立つのか理解できるので覚えやすくもなりますし、もし忘れてしまっても対応できるようになるのでおすすめです。例えば三角関数の2倍角とか3倍角なんかは加法定理とか、数3ですがド・モアブルの定理などから簡単に導出できますよね。加法定理を毎回導出するのは流石に面倒ですが、2倍角や3倍角を加法定理から導出するのは少しの時間でできますよね。このようにあまり覚えていなくても簡単に導出できる公式はなるべく導出できるようにした方が良いです。 さて、話を戻しますが、以上のように公式や定義が頭に入っていることを前提として、初見の問題でどのように対処するべきかについてお話しします。まず冒頭でもお話ししたように、数学は問題文だけから解答を考えなければなりません。そこでまず、問題文の条件に着目します。条件というのはいろいろあります。例えばnを自然数とするとか、x、yが円の方程式を満たしているとか、垂直に交わるとか、さまざまです。他にも、直接的には書かれていないけれども重要な条件もあります。例えば与えられた式が対称式であるとかです。こうした条件から、解答を考えていきます。例えば上の例で言えば、nを自然数として、かつnに関する命題が与えられて証明しなさいといった問題であれば、自然数かつ証明問題であることから数学的帰納法が浮かびますし、x、yが円の方程式を満たしていて、かつx、yの2変数からなる関数の最大最小を考えたい時、xとyが円の方程式を満たすという条件から、θを媒介変数としてx、yをcosθとsinθで置くとかが考えられます。他にも、垂直に交わるという条件があれば、例えばその垂直に交わる直線の傾き同士の積は−1とか、内積0とか、あるいは図形的に三平方の定理を利用することも可能かもしれません。以上のように、条件を見たときにいろいろなことが考えられるようになることで、初見の問題で同じような条件が出てきたときに対応できます。もちろん入試問題というのは問題集には載っていない初見の問題である場合がほとんどです。なので普段解いている問題と全く同じでないのは当たり前ですが、条件に関して言えば部分的に共通していますよね。なのでこうしたことが想起できるようになれば、初見の問題でも対応できるようになるわけです。しかしこのように、条件を見てそこから解法を想起するというのは初見では無理ですよね。それを問題集から学ぶわけです。つまり、ただ問題を解いて、解けなかったら答えを見て覚えて終わりではなく、解法を見たとき、それが「なぜ」そうなるのかを考えます。そして、もし自分が初見でその問題を解くとしたら、まず問題文のどの条件に着目するのかを考えます。このようにすることで、解法のストックを増やしていくわけです。とにかく、解答を見たものでも初見だったらどうするのか、そして「なぜ」そうするのかまで説明できるようになることで、初見の問題でも、それまでストックした解法の引き出しから解法を想起でき、対応できるようになるわけです。なのでまずは今までやった問題集で、問題文のどの条件に着目して、「なぜ」その解答になるのか考えながら学習するようにしてみてください。以上になります。ご質問などありましたらコメント欄の方でお願いします!2:["$","main",null,{"className":"px-4 pt-4 pb-4","children":["$","div",null,{"className":"max-w-3xl mx-auto w-full","children":[["$","div",null,{"className":"mb-8","children":["$","$L7",null,{"href":"https://unilink-app.onelink.me/isbO/h6xeh63x?advice=31GOs30BTqPwDZPuY3XY","target":"_blank","children":["$","$L8",null,{"src":"/images/web_to_app_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink WebToAppバナー画像","className":"mb-4 rounded"}]}]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"数3の予習について"}],["$","div",null,{"className":"flex justify-between mb-4","children":[["$","div",null,{"className":"text-left text-xs text-caption","children":["クリップ(",15,") コメント(",0,")"]}],["$","div",null,{"className":"text-right text-xs text-caption","children":"12/13 20:29"}]]}],["$","div",null,{"className":"coach-mark mb-4","children":"UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。"}],["$","div",null,{"className":"mb-4","children":["$","$L13",null,{"clientImageUrl":null,"clientUserName":"Kota","infoString":"高2 沖縄県 九州大学工学部(60)志望","adviceId":"31GOs30BTqPwDZPuY3XY"}]}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","consultation-part-0",{"children":[null,"進研模試で偏差値63ぐらいで九州大学の工学部を志望している高校2年生です。これから数学3の予習をしようとしているのですが、数学2bや1aの復習もしたいと考えています。いまから数学3の予習はすべきだと思いますか? また、すべきならどれぐらいの期間で何をやった方がいいですか?\nちなみにいま持っている数学3の参考書はフォーカスゴールドで、スタディーサプリもやっています。"]}]]}],["$","div",null,{"className":"pt-4","children":["$","$L14",null,{}]}]]}],["$","h1",null,{"className":"text-xl font-semibold mb-2","children":"回答"}],["$","div",null,{"className":"mb-4","children":["$","$L15",null,{"adviserImageUrl":"https://firebasestorage.googleapis.com/v0/b/unilink-48e75.appspot.com/o/images%2Fs_Oou0tJz4wTbzaJ6HpZzQAgIh9GZ2.jpg?alt=media&token=690b2ef6-c85b-45da-9920-7d340e4fc684","adviserName":"yuya","adviserDepartment":"東京工業大学物質理工学院","adviceId":"31GOs30BTqPwDZPuY3XY"}]}],["$","div",null,{"className":"coach-mark mb-4","children":"すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。"}],["$","div",null,{"className":"mb-8","children":[["$","div",null,{"className":"leading-loose whitespace-pre-wrap","children":[["$","div","advice-part-0",{"children":[null,"数3の予習をゴリゴリ進めちゃっていいよ!!\n数3って新しい内容もあるんだけど、基本今までやった1a2bを絡めた問題だから解くだけで復習にもなる🙆‍♂️\nちなみに数3の分野は↓みたいな感じ\n\n①平面上の曲線\n楕円とか双極線っていう、円の上位互換みたいなやつが出てくるよ〜。\n→数2の図形と方程式の応用!\n\n\n②複素数平面\n複素数を図形的に扱っていく単元だよ!図形を回転させれるようになるね🙆‍♂️\n→数2のいろいろな式の範囲の複素数が絡む!\n\n\n③関数と極限\n数2指数関数、対数関数、三角関数、数B数列ができたら、それを無限大までビヨーンって伸ばすとどうなるのってお話しだね。\n→上に書いた単元がからむ!\n\n\n④微分\n今までの微分より関数が複雑になっていくよ!でもパターンがあるから網羅できれば大丈夫👌\n→数Bの微分がからむ!\n\n⑤積分\n体積とか曲線の長さを求められるようになるよ🙆‍♂️簡単ではあるけど計算が面倒になるから計算力も必要!\n→数Bの積分がからむ!"]}]]}],["$","div",null,{"children":["$","$L7",null,{"href":"https://ck.jp.ap.valuecommerce.com/servlet/referral?sid=3364577&pid=884970531&vc_url=http%3A%2F%2Fshingakunet.com%2F%3Fvos%3Dnrmnvccp0000100","rel":"nofollow","target":"_blank","children":["$","$L8",null,{"src":"/images/document_request_banner.jpg","width":3660,"height":1500,"sizes":"100vw","style":{"width":"100%","height":"auto"},"alt":"UniLink パンフレットバナー画像","className":"mt-4 rounded"}]}]}],["$","div",null,{"className":"pt-4","children":["$","$L16",null,{"id":"adsbygoogle-init-under-advice"}]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","h1",null,{"className":"text-xl font-semibold","children":["コメント(",0,")"]}],["$","$L17",null,{"adviceId":"31GOs30BTqPwDZPuY3XY"}]]}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"text-xs p-4","children":"コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。"}]}],["$","h1",null,{"className":"text-xl font-semibold","children":"よく一緒に読まれている人気の回答"}],["$","div",null,{"className":"mb-8","children":["$","div",null,{"className":"divide-y","children":[["$","div",null,{"children":["$","$L7",null,{"href":"/advice/31GOs30BTqPwDZPuY3XY","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数3の予習について"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"数3の予習をゴリゴリ進めちゃっていいよ!!\n数3って新しい内容もあるんだけど、基本今までやった1a2bを絡めた問題だから解くだけで復習にもなる🙆‍♂️\nちなみに数3の分野は↓みたいな感じ\n\n①平面上の曲線\n楕円とか双極線っていう、円の上位互換みたいなやつが出てくるよ〜。\n→数2の図形と方程式の応用!\n\n\n②複素数平面\n複素数を図形的に扱っていく単元だよ!図形を回転させれるようになるね🙆‍♂️\n→数2のいろいろな式の範囲の複素数が絡む!\n\n\n③関数と極限\n数2指数関数、対数関数、三角関数、数B数列ができたら、それを無限大までビヨーンって伸ばすとどうなるのってお話しだね。\n→上に書いた単元がからむ!\n\n\n④微分\n今までの微分より関数が複雑になっていくよ!でもパターンがあるから網羅できれば大丈夫👌\n→数Bの微分がからむ!\n\n⑤積分\n体積とか曲線の長さを求められるようになるよ🙆‍♂️簡単ではあるけど計算が面倒になるから計算力も必要!\n→数Bの積分がからむ!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["東京工業大学物質理工学院"," ","yuya"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":15}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math13.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/ck_L63oBTqPwDZPufuq6","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数学をいつまでに完成させるべきか。"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$18"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["大阪大学工学部"," ","ワニ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":30}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":6}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L19","ad-on-advice-list-2",{"id":"ad-on-advice-list-2"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/pVFw2H0BTqPwDZPuGI3u","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"式と曲線と複素数平面"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは。\n複素数平面と式と曲線の勉強についてですね。\n基本的には今持っている青チャートとプラチカで十分だと思います。\n基礎が危ういなら青チャートの例題などを丁寧に解いてみてください。時間はあまりないので、これ解ける!って自信のある問題は飛ばしてもいいです。終わったら、プラチカで演習してみましょう。もし難しくて解けないのであればもう少しレベルを落としたら良いと思います。個人的には北大の問題とかは難しすぎずにためになりました。\n\n式と曲線は微積と組み合わせて出てくることが多いです。微積の問題解く中で思い出しながらやってみてください。あまり出ることはないと思いますが、もし出たら焦るので、極方程式や楕円、双極線の性質などは青チャートなどで復習すると良いと思います。\n\n頑張ってください!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["慶應義塾大学理工学部"," ","Eri"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math7.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/IEr2tnIBTqPwDZPuaXWn","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数3 順番"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1a"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学農学部"," ","QUNO"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":26}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math6.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/YlKGoIEBTqPwDZPuK5cm","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数三の独学をやめるべきですか?"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":" 数Ⅲ捨てはあり得ないと思いますよ。僕は独学で数Ⅲを進めることを強くお勧めします。僕の数三に対するイメージは、「複素数平面とかはちょっと捻られがちだけど、それ以外は全体的にIaⅡbより簡単で、Ⅲのみの大門とか正直点の取り所」と言った感じです。(もちろん難問も数多く存在しますけどね。)たぶん大体の受験生は数Ⅲを学んできますし、彼らの数Ⅲへのイメージも僕と大きくかけ離れてはいないでしょう。つまり、その捨てた第3問は周りの受験者にとって恰好の得点源となり得るということです。\n 他教科での挽回ももちろん可能ですが、英語でも少し遅れをとるとするなら、化学のみでの挽回はいくらなんでも無理があります。数Ⅲにはそれほど自習が困難な単元はないと思うので、是非取り組んでほしいです。\n なお、僕の感覚では二次曲線は出題されにくい傾向にあります。もし取り組むなら\n(極限→微積)→複素数平面→二次曲線\nですかね、極限と微積はセットの方がいいです。複素数平面を先行させても構いません。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["東京大学理科一類"," ","Atom"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":10}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math13.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1b","ad-on-advice-list-5",{"id":"ad-on-advice-list-5"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/_Utbv3QBTqPwDZPu8WZp","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"極める分野を絞るのは良いか"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"過去問で出題されている中だと、数列や複素数平面は典型問題が多く、演習が結果に結びつきやすいと思います。\nですが、出題されている他の分野や出題されていない分野に関しても勉強しておいた方がいいと思います。問題に対するアプローチの数を増やすことにもなりますし、なにより、出題される可能性が0では無いからです。\n三角関数単体や指数関数単体で出題されることは、なかなか無いですが、他分野と融合されることは多いのでやっておいて損はありません。\nまた、整数はどれだけ問題に触れたかが大事になったりするので、一対一対応の演習程度は少なくとも解いておいた方がいいでしょう。\n"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学医学部"," ","Yu"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":0}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math5.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/nW1jpUg1zcOBEkkJi7EJ","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数Ⅲ 順番"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは。今回は数3の勉強の進め方について解説します。\n\nまず、分野的な繋がりですが、式と曲線、極限と微積は密接に関係しているので、「式と曲線」→「関数と極限」→「微積」の順番でやることをおすすめします。もし時間がなければ、式と曲線は飛ばして後にまわしても良いと思います。(極座標系が後回しになるのは少し痛いですが…)\n\n次に、複素数平面についてですが、少し独立している分野なので好きな時にやるといいと思います。可能なら、他の分野と並行しても構いません。(混乱しないならば)\n\n数3は大学数学と近しい位置にあるので、難易度に天井があります。それ以上高度なことをすると大学の範囲になってしまうので…つまり、やればやるほど得点源になる分野です。基本に忠実に数3を網羅したら、演習を積んで是非得点源にしてください!頑張ってください🔥"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["一橋大学経済学部"," ","むほほ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":4}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":1}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math6.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/XluOkWMBp00JfyF5pONv","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"三角関数の変形の使い分けについて"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"質問者様は高2ということなので、数Ⅱまでの範囲で回答させていただきます。\n\n\n【三角関数を変形する目的】\n\nまず、三角関数を変形するのは必ず目的があります。\n①三角関数を含んだ方程式・不等式を解くため\n②三角関数を含んだ関数の最大値・最小値を求めるため\nなどがよくある目的ですね。\n\n《①について》\n方程式や不等式ははじめに因数分解で攻めます。\n(因数)(因数)=0\nといった形になれば、あとは簡単ですね。\n因数分解しない場合は②の考え方をそのまま借りましょう\n\n《②について》\nsinのみ、cosのみ、tanのみ、の式に帰着させます。そしたら見たことある関数(一次関数、二次関数など)になります。\nそのための手段として\n*三角関数の相互関係\n*加法定理を用いた公式\nなどが存在します。\n\n\n---------\n\n【質問主様の弱点と思われるところ】\n\n数Ⅱの三角関数に入ってからうまくいかなくなった高校生は加法定理を用いた公式につまづいている人が多いです。\n公式自体覚えていても、問題でうまく活用出来ないことがよくあります。\n\n先程の項目で書きました、変形のそもそもの目的を意識して演習してみてください。\n使い分けパターンは青チャートなどのテキストに詳しく記載されています。これを身につけることが大切です。\n\nパターンを繰り返しの演習で身につける際に、\n「因数分解を目指す!」\n「sinのみ、cosのみ、tanのみの式を目指す!」\nという意識を持って取り組むことで、何故その式変形を使うのかが体感出来ます。\n\n\n---------\n\n【最後に】\n\n問題のゴールから逆算して考えることが数学においては大切です。\n初めから逆算して考えることなんて出来ないから、パターンを演習によって身につけるわけですが、ゴールを意識してパターンを身につけなければ、何のためのパターンなのかがわかりません。\n必ず、式変形の目的を意識した演習を心掛けてください。"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["京都大学工学部"," ","クウルス"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":26}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":2}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","$L1c","ad-on-advice-list-8",{"id":"ad-on-advice-list-8"}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/KFJ2MYMBTqPwDZPuNN3b","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数学ⅢとⅠAⅡBの応用について"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"こんにちは!\n\n結論から言いますと、数3が完全に1a2bの全ての範囲の復習になるかと言いますと、そうとはいえません。数3は数1,2の復習にはなると思うので、数3をしながら数1,2の基本が足りないと思ったらそこに振り返る、というのがベストだと思います。特に、数3は数Aの内容をあまり含んでいません(含むとしても、確率の一部程度)。ですので、数3をメインでしつつ、数Aの復習はした方がいいと思います。\n\nまた、数Bに関してですが、数列は極限という単元でかなり復習できます。しかし、ベクトルに関してはほぼほぼ扱いませんので、ベクトルは定期的にやっていきましょう。図形的な分野を中心にやるといいと思います。\n\n数3はかなり難しく、骨のある分野が多いです。微積分は特に量が多く、つまづく部分も多いと思います!ですので、できるだけ数3は早くから取り組み、時間をかけて定着させていきましょう。\n\nここまでをまとめると、\n・数3は数1,2、Aの確率の一部、数列の復習となる。\n・数Aの確率、整数は含んでおらず、定着に時間がかかるため、別でやっておくのがよい。\n・数Bのベクトルもほぼほぼ含んでいないので、図形的な分野中心にやっておくのがよい。\nです!頑張ってください!!"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["九州大学経済学部"," ","riku"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":8}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":3}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"理系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math4.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"理系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}],["$","div",null,{"children":["$","$L7",null,{"href":"/advice/51JEE4MBTqPwDZPu09jv","children":["$","div",null,{"className":"flex items-center py-4","children":[["$","div",null,{"className":"flex-1 mr-3","children":[["$","div",null,{"className":"mb-1","children":"数学が全然できるようにならない"}],["$","div",null,{"className":"text-xs text-caption line-clamp-2 mb-1","children":"$1d"}],["$","div",null,{"className":"flex mb-1","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0V0z","children":[]}],["$","path","1",{"d":"M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0 10c2.7 0 5.8 1.29 6 2H6c.23-.72 3.31-2 6-2m0-12C9.79 4 8 5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 10c-2.67 0-8 1.34-8 4v2h16v-2c0-2.66-5.33-4-8-4z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs","children":["大阪大学経済学部"," ","RIZ"]}]]}],["$","div",null,{"className":"flex justify-between","children":[["$","div",null,{"className":"flex","children":[["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 6v11.5c0 2.21-1.79 4-4 4s-4-1.79-4-4V5a2.5 2.5 0 0 1 5 0v10.5c0 .55-.45 1-1 1s-1-.45-1-1V6H10v9.5a2.5 2.5 0 0 0 5 0V5c0-2.21-1.79-4-4-4S7 2.79 7 5v12.5c0 3.04 2.46 5.5 5.5 5.5s5.5-2.46 5.5-5.5V6h-1.5z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":34}],["$","svg",null,{"stroke":"currentColor","fill":"currentColor","strokeWidth":"0","viewBox":"0 0 24 24","className":"text-subPrimary mr-1","children":["$undefined",[["$","path","0",{"fill":"none","d":"M0 0h24v24H0z","children":[]}],["$","path","1",{"d":"M16.5 3c-1.74 0-3.41.81-4.5 2.09C10.91 3.81 9.24 3 7.5 3 4.42 3 2 5.42 2 8.5c0 3.78 3.4 6.86 8.55 11.54L12 21.35l1.45-1.32C18.6 15.36 22 12.28 22 8.5 22 5.42 19.58 3 16.5 3zm-4.4 15.55-.1.1-.1-.1C7.14 14.24 4 11.39 4 8.5 4 6.5 5.5 5 7.5 5c1.54 0 3.04.99 3.57 2.36h1.87C13.46 5.99 14.96 5 16.5 5c2 0 3.5 1.5 3.5 3.5 0 2.89-3.14 5.74-7.9 10.05z","children":[]}]]],"style":{"color":"$undefined"},"height":16,"width":16,"xmlns":"http://www.w3.org/2000/svg"}],["$","div",null,{"className":"text-xs mr-2","children":8}]]}],["$","div",null,{"className":"text-xs rounded-lg border border-text px-4","children":"文系数学"}]]}]]}],["$","div",null,{"children":["$","div",null,{"className":"bg-caption w-20 h-20 rounded-sm overflow-hidden","children":["$","div",null,{"className":"w-full h-full relative","children":["$","$L8",null,{"src":"/images/advice-category/math/math1.jpg","fill":true,"style":{"objectFit":"cover"},"sizes":"100%","alt":"文系数学カテゴリの画像","placeholder":""}]}]}]}]]}]}]}]]}]}]]}]}]