UniLink WebToAppバナー画像

証明は理解すべきか

クリップ(4) コメント(1)
1/12 1:50
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

Kurikin

高2 神奈川県 東京工業大学志望

東工大を目指している高校二年生なのですが、数学の証明はすべて理解&導出できるようにした方が良いのでしょうか? 今のところは、青チャートを解きながら、公式などが出てきたら、その証明を理解&導出するようにしています。 ご回答よろしくお願いします!

回答

回答者のプロフィール画像

はやしん

京都大学教育学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
ぜひ理解し、導出できるようにしてください。 難しい問題になればなるほど基礎がしっかりわかっていることが問われます。 また、導出できるようにすれば咄嗟に公式を忘れてしまった時にも役立つので!
回答者のプロフィール画像

はやしん

京都大学教育学部

296
ファン
10.4
平均クリップ
4.4
平均評価

プロフィール

京都大学教育学部3回生です。 高二の冬に京都大学に心理をしっかり学べる学部があると知り、志望校を大幅に変更し、一浪して入学しました。 暗記が苦手で、数学や理科が得意だったので、現役時も浪人時も理系入試を受けました。 センターは地理、物化選択、2次は化学を選択しました。 元々成績がよかった方ではなかったため、成績をどのようにしてあげればいいのか、悪い成績にどう向き合うのがいいのか、メンタルのもち方、などをアドバイス出来ればいいなと思っています!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

Kurikinのプロフィール画像
Kurikin
1/12 7:04
やはり、証明は重要なんですね。 ご回答ありがとうございました!

よく一緒に読まれている人気の回答

公式の意味を理解し、導けるようにすることに時間をかけるべきか
こんにちは。公式の理解と導出についての質問ですね。 簡単にいうと、理解するべきものと覚えてしまえばよいものがあります。 数学は暗記科目ではないですが、例えば中学校で習った二次方程式の解の公式など、覚えなくては問題が解けないものも多くあります。 しかし、こういうものはたいてい問題を解き続けていれば自然と覚えてしまうものなので、わざわざ暗記しようと気負う必要はありません。その分問題を解いて欲しいです。 導出すべきものとしては、例えば半角の公式や3倍角の公式です。2倍角は自然と覚えると思いますが、上記2つの公式は使用頻度が低いため覚えるよりは毎回導出す?のをオススメします。 導出の手順は教科書や参考書に載っています。見ながらノートに書くでも良いので一度は導出の流れを掴んで欲しいです。 ちなみに、難しいですが導出を頭の中だけでするのは計算練習や頭の体操とても良いのでオススメです。 導出すべきものとそうでないものの見分け方としては、教科書や参考書に導出方法が載っていなくて、かつ使用頻度が高いものは導出せず、覚えてしまう。そよ逆のものは導出過程を一度は経験しておくという形で良いと思います。 以上です。参考になれば幸いです。
北海道大学水産学部 しみしみ
11
0
理系数学
理系数学カテゴリの画像
数学公式
文系ですが答えさせてもらいます。(数学は使ってました) 今でもそうなんですが、公式の仕組みが納得できないと個人的には気持ち悪くてしょうがないんですよね。 どうしてこの公式になるかを納得する →公式を暗記 →実際に公式を使って、使用方法と公式を頭に定着させる こんな感じですかね。 理由としては、1番はそうじゃないと気持ち悪いっていうのがあるんですが、、、笑笑 でも、実際問題、公式の導出を問われたりする問題ありますし、また、公式の仕組みが分かってないと解けないような問題も一定数あります。 特に、三角関数・微積分・シグマ計算あたりの公式は導出過程を理解できてると、数学的な思考力の幅が広がるイメージあります。 もちろん、導出過程を知らなくていいのもあります。でも、一回は導出にチャレンジしてみるといいです。それで、「あー、これは公式だけ覚えておけばいい感じかな?」みたいなやつもたくさんあります。導出過程がめんどくさかったりするから、わざわざ公式にされているんで、それを覚えてしまうこと自体悪いことではないです。 公式の結果だけを覚えておくパターンのやつは、とくに物理・化学に多い印象ですね。「実験の結果、こうなった」とか、「この公式を定義とする」みたいのは、理科系では多いです。そういうのは、あまりこだわらず、一回くらい説明書き読む程度でいいと思います。
慶應義塾大学商学部 タイ
4
2
理系数学
理系数学カテゴリの画像
公式の証明
こんにちは!東北大学文学部のkitaです! お答えさせて頂きます! 理想としては、教科書で習った公式は証明できないといけません。 大学の先生に、参考書にあったよね?と言われても知らん!と言えますが、教科書でやったよね?、と言われたら何も言えません😅 ただ、全てを意味もなく丸暗記するのはナンセンスです。 そこで、僕が実際に行っていたのは、何度も出る公式(使用頻度が多い)や、今までに他の大学も含め問われたことのある公式、は必ずやりました! 例としては、正弦余弦、加法定理、点と直線の距離公式、積分の面積公式あたりが王道でしょうか。 他には、僕は数学が好きだったので、ちょっと勉強に疲れた時に、息抜きとして公式の証明を調べて、エレガントな証明方法があると感動してました(笑) 数学の定理や公式の証明は、1つの証明にさまざまな知識を必要とします。それなので、基礎がないと自力で行うのが難しいですし、逆に出来るようになるとかなりの数学がついた、と言ってもいいでしょう。 質問の的確な答えになっているか分かりませんが、入試に出るかも大事ですが、その定理や公式の根本を知ると、間違いなく入試に役立ちます! 最後に、たくとさんの目標が達成されることをお祈りしています。頑張ってください!!
東北大学文学部 kita
9
5
文系数学
文系数学カテゴリの画像
答え見てもわからない問題
こんにちは!東工大理学院のひろと申します! 数学で、答えを見ても分からない問題がある時の対処法をお伝えしようと思います! まず、教科書に載っている基本事項が抜けていないか確認しましょう。大抵の問題は基本事項を抑えることが出来ていれば、解説を読めば理解出来るはずです!それでも分からないという場合は数学の先生に聞くなどして解決しましょう。その際も、ここまでは理解できたが、その先が分からないという聞き方をするとスムーズで仕事が早いでしょう。 では、教科書に載っている基本事項を抑えるとはどういうことなのかをお伝えします。まず、大切なのは公式を一通りマスターすることです。もちろん公式の丸暗記はよくありません。なぜその公式が導かれるのかを自分で説明できるようになって初めてその公式をマスターできたと言えるでしょう。実際に僕は公式は無理に暗記せず、なんとなくで覚えて全て導出できるようにしていました。あとは、問題を解いていく中で自然に使えるようになります。覚えようとして覚えるのではなく、使っていくうちに覚えるのが効率が良いと思います。また、公式をマスターした後に解く問題は教科書の例題程度で構いません。教科書の例題は舐められがちですが、重要な例題が沢山載っているのでしっかりマスターしましょう。その後は、教科書の章末問題、網羅系参考書といった順番で進めていくと良いでしょう。僕は網羅系参考書でFocusGoldを使っていました。この流れで進めていけば大抵の問題で解説を理解することは可能だと思います。(初見で解けなくても) 大切なのは、丸暗記しないことです。数学は暗記科目ではありません。必ず思考のプロセスがあります。それをおろそかにするといつか難しい問題に当たった時に行き詰まります。そうならないように、日頃から思考のプロセスを意識して数学の勉強をしてください。思考のプロセスとは、何故そのような変形をするのか、何故その公式を使うのかなどのことです。これを説明できるようになると、数学の力がどんどん上がっていくでしょう。 最後に、何故そうなるのかを意識しながら数学の勉強を進めてください。分からないことがあれば基本事項に立ち返って、周りの人に頼りながら頑張ってください!良い結果が出ることを心から祈ってます!!
東京工業大学理学院 ひろ
0
1
理系数学
理系数学カテゴリの画像
東工大志望校高二です。
めっちゃわかるわ〜!!!!その気持ち。 定期考査の時は問題覚えてるからスラスラ出てくるんだけど、数ヶ月後の模試になると出て来なくなっちゃうんよな… 公式っていっても覚えたほうがいいのと覚えなくてもいいのがあるよね。それについて少し下に書こうかな。 三角関数の定理とか公式とか結構色々あるよね。和積の公式とか積和の公式って覚えさせられるかと思うけどあんなの覚える必要はないからね。加法定理さえ覚えてれば全部導けるから。 定期テストで完璧に覚えるべきなのは「定理」ね。 これは「Apple」って言われたら頭の中で「りんご」が浮かぶくらいに当たり前にすることが大事。「加法定理」って言われたらこんな形だな〜って頭の中で浮かんでくるようにすること。 逆に「公式」は定理さえ覚えてれば問題用紙の端っこに書いて出せるからおぼえなくていい!導き方だけ3.4回練習しとこ? 人間だから全部の公式を完璧に覚えるのってすごく大変だと思う。ただでさえ君は国立を目指して科目数も多いから他にも暗記することが沢山だと思う。一回試してみて自分に合うやり方を見つけて見てね!
東京工業大学物質理工学院 yuya
1
2
理系数学
理系数学カテゴリの画像
青チャートの進め方
初めまして。 数学の勉強についてアドバイスできたらと思います。質問者さんはしっかり基礎を固めようという勉強のやり方ができていて本当に素晴らしいと思います。質問者さんの通り、数学で本当に重要なのは基礎です。そのために青チャート、素晴らしい武器だと思います。そしてその青チャートの進め方、素晴らしいと思います。どの問題も見た瞬間に説明出来る。これは本当の理想形だと思います。まぁでも実際に全ての問題をそこまでに持っていくのは本当に本当に簡単なことでは無いです。しかしそれを目指して勉強することは価値のある事だと思います。もちろんできなかった問題には印をつけて2週目、さらにできなかったものは3周目…とまずは完璧に解けるようにすることを目指して、どうも苦手であまり解けないなと思う問題を解法から全て解説できるようにするというのでも十分かと思います。自分の中で分かりきったほどまで理解出来ているような問題であれば別にそれを極める必要は無いかということです。僕が青チャートを解く上で意識していたのはそのように抜け目の無いようにしよう、ということです。何周もして分からないものを無くしていく。そして次の参考書や過去問に挑んだ時分からない問題や不安な問題があったら同じ分野の青チャートまで戻って、時には教科書まで戻って復習する。そのことを心がけていました。 正直、青チャートを完璧にするというのはゴールの見えないレベルで難しいものだと思います。いつくらいに完璧になったかという質問には僕は答えられません。本番の前まで青チャートを確認していました。夏くらいには他の参考書にレベルを上げていたかもしれませんが、青チャートが完璧になったとは本番前まで言えなかったと思います。というか結局完璧にはならなかったというのが正しいかもしれません笑。でも、これだけは確かに言えるのですが、数学に限らず勉強の本質は復習にあるということです。完璧にするという言葉の裏には常に復習するという言葉が隠れています。ですので真の意味での完璧を目指して固執しすぎるのではなく、先程言ったように他の問題を解いていて分からなかったらその都度青チャートや教科書に戻ってくる。ある程度完璧に近づいたならこの作業というか復習することが本当に大切になってくると思います。 質問者さんは背伸びをせずしっかり基礎から勉強しています。これは実はかなり凄いことで、それが出来ていることにまずは自信を持ちましょう。またその進め方も自信を持っていいと思います。僕か言ったアドバイスはあくまでぼくの意見ですので、質問者さんがもっとこれだ!と思う勉強があるならそれを極めてみてください!どうか質問者さんの勉強が捗ることを願っています。
京都大学工学部 KS
15
4
理系数学
理系数学カテゴリの画像
数学の問題を理解するには
問題演習に関して、予習するときには、まず自分の頭でしっかり考えることが大事だと思います。問題文から何が読み取れるのか、条件・設定の正確な把握をすることが重要です。その次に、それをどういう数式で表現できるのかを考えていきます。そうすると、ゴールまでの道筋がスッと見えてきたりもします。解説を見る前、聴く前にまずこれはやっておきましょう。問題の解説を理解するには、問題の理解が前提として必要です。 復習時にも同じような視点で、ノートの記録を見てみましょう。どうしてこういう式が立てられたのか(問題文の条件や設定のどこに注目しているのか)、立てた式をどういう着眼点で捉えてどのような式変形をしているのかなど、じっくり考えていきましょう。そうすることで、数学的な見方を養っていくことが大切です。 以上のことを意識して、問題演習に当たってみてください。数をこなすのも大事ですが、解説を聞いただけ、読んだだけで復習できたことにしないようにしてください。
北海道大学薬学部 CoNY
23
0
文系数学
文系数学カテゴリの画像
文系数学で高2のうちにやっておくべきこと
私も青チャートを使っていました! 基本的に、高2だろうと高3だろうと勉強法は変わりません。 青チャートが解ければ、他の問題は怖くありません。 以下、勉強の極意です。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
127
10
文系数学
文系数学カテゴリの画像
数学の勉強法
はじめまして!東京大学理科一類の者です。 数学に悩んでいると言うことなので、数学の勉強方法をご紹介させてください! まず基礎的な話として、各項目の公式、定理を洗い出してみてください。次には、その公式や定理の証明や導出が行えるのかと言うことを考えてみてください。証明や導出は教科書やネットにのっていますので、確認したい場合は使用してください。公式や定理の証明や導出を行えるようにすることで、どの定理と定理が密接に関係しているのかやその式の本質的な意味が理解できるようになるはずです。 例えばですが、余弦定理の証明をしようとしたときに、三平方の定理を使用することになると思います。ではその三平方の定理を証明できるか?と言った具合に、どの定理にどの定理が絡んでいるかを確認することができます。また定義と定理の違いを再認識できるはずです。(結構重要) 次に問題集の使用方法ですが初見の問題を解いた後、自力で解くことのできた問題も含めて、解答で使用している計算操作に対して、「なぜその操作を選択したのか(どんな結果をみたい・得たいからその操作をしたのか)」という根拠を持っておくことが大切です。 この訓練を常時意識して取り組むことで、難問にぶつかったとしても闇雲に手を動かすのではなく、最速で私的にその問題を切り崩していくことが可能になるはずです。 どのような難問でも基本的には、基本問題の絡み合いなので、「どの基本問題が組み合わさってこの問題は構成されているのだろう?」ということを意識するのがいいかと思われます! 参考書の復習の際は、すべての問題を再度手を動かして解く必要はありません。再度手を動かして解く必要があるのは、その問題を読んである程度の時間が経っても解法が浮かばない場合です。この場合の解法とは、計算のことではなく先ほど述べた基本問題への分解ができるかという意味です。 解法が浮かんだ場合は、実際に解答と照らし合わせてみる程度で大丈夫だと思います。 以上が私のおすすめの数学の勉強法になります。 以前解けるようになったはずの問題が時間が経てば解けなくなっているとのことだったので、本質的な理解につながるような勉強方法をご紹介しました。 是非参考にしてください!
東京大学理科一類 ryu031ki
28
12
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
235
33
理系数学
理系数学カテゴリの画像