UniLink WebToAppバナー画像

数学の記述力を上げたい!

クリップ(17) コメント(0)
12/10 21:57
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

gold

高3 愛知県 一橋大学志望

模試などで数学の点が上がらないので、青チャートの問題を解いて挑むのですがなかなかのびません。。 数Aの分野が特に苦手で、重視して勉強していますがあまりイメージができません。 こんな自分ですが、数学の実力をつけるにはどんな勉強が合っているのでしょうか?教えてください。

回答

9と3/4

一橋大学社会学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
イメージができないという部分について僕が的確な解釈が出来ているかどうかわかりませんが、数学の力の付け方は2パターンに分かれると考えます。 ①問題を見てどういう解き方かだけを考える。 ②時間を気にせずにとにかく満点になる解答を目指す。 です。前者はセンスがないと思っている(ここでいうセンスとは先天的なものではなく、確率や整数などで解き方のストックが多い人のことを指します)方におすすめです。わかる問題は解答できるが、手も足もでない問題が出ると何もかけないと該当されるならば①のタイプです。とにかく問題数に多く触れて自分の手持ちカードを増やしましょう。高3ということで時間もないかつ他の教科のこともありますので1問につき3分程度でどうやって書くか想定して答えを見る→あってたら飛ばす、間違っていたらその解き方を覚える。これを一橋数学で15年分くらいやればおそらく網羅できます。 ②についてはいつも部分点はとれるが完全な解答を書けないという方向けです。解き方のストックはある程度持っておられますので、最後の仕上げの部分にフォーカスしましょう。ここでは時間はさほど気にしなくて良いです。まずは解を導くことを優先しその後時間をはかりましょう。 以上が僕のおすすめする文系数学の力の付け方だと考えます。 ご不明な点やわからないところがございましたら聞いてください!

9と3/4

一橋大学社会学部

13
ファン
14.6
平均クリップ
4.5
平均評価

プロフィール

受験科目は世界史、倫政、化基、生基。 併願は早稲田大学 教育学部 商学部 慶應義塾大学 商学部 文学部 上智大学 法学部 (TEAP利用) です。(いずれも合格です) 一橋独自の対策や先生が答えにくい情報まで包み隠さずお答えします!

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

数学の点の取り方
数学の苦手な人の為に 数学の克服法について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、 半分間違っている認識だと思います。 実は数学はある程度、 暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、その問題の類題は解けないということです。 なので、これらの典型的な基本問題は 覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! どうしてこう考えるのか? どうしてこの式変形をするのか? といった考え方を暗記するということです。 一般的にこれらの典型的な基本問題を組み合わせたものが応用問題とされます。 つまり、難しく見える応用問題をいかにして自分の知っている基本問題の形にするかが差がつくポイントになります。 したがって、数学が苦手だと思う方はまず典型的な基本問題をある程度暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください! これをやるだけで数学はぐっと偏差値が上がります! ぜひやって見てください! 忘れた時に見返してくれたら幸いです!
慶應義塾大学理工学部 チェンパン
35
2
理系数学
理系数学カテゴリの画像
数学嫌いでも数学を安定させるには
数学の苦手克服について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、半分間違っている認識だと思います。 実は数学はある程度、暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、類題は解けないと思います。 なので、これらの基本問題はある意味では覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! これらの基本問題の考え方を初見の問題に応用する問題が真に考える問題、つまり応用問題です。 したがって、数学が苦手だと思う方はまずある程度基本問題を暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください!
慶應義塾大学理工学部 チェンパン
16
0
理系数学
理系数学カテゴリの画像
どうすればいいのか分からない
まず、この時点でチャートの例題が解けるようになっているのは素晴らしいと思います👍 基礎力は着実についてきていると思うので全く悲観しなくて良いです。 どういう所で点を落としているのかわからないですが、どの分野も青チャートの例題はほぼ解ける状態だとすると、その先の訓練が少し足りていないのかなと思います。 具体的には「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけることです。 (ここでいう基礎知識というのは、青チャートの例題1つ1つが扱っているポイントのことです。) 入試問題は 🔆「青チャート例題レベルの基礎問題」 🔆「少しひねってあるが、青チャート例題レベルの基礎知識を組み合わせたり、発展させたりすれば解き切れる標準問題」 🔆「基礎知識だけでは解きにくく、最後に回すべき難問」 の3つに大別されます。 入試本番は全5問がどの種類なのかを見極め、解く順番を決めた上で、上記の基礎問題と標準問題を解けるところまで解き切る必要があります。 基礎問題はほとんどの受験者が解ききれ、標準問題はそれ以前の勉強によって差がつき、難問は極めて少数の人間しか試験時間内に解けないため、標準問題をどれだけ解けるかが勝負となります。 では先述の、「少しひねってあるが、青チャートレベルの基礎知識を上手く使えば解き切れる標準問題を見抜いて・解ききる力」をつけるには何をすれば良いのか? その答えが過去問演習になります。 普通の参考書ではダメなのかと思うかもしれませんが、一般的に難しいとされている参考書は、ここでいう標準問題だけを集めたものが多いです。 なので、こういった参考書だけでは実際に入試で出る基礎問題や難問の手触りが学べません。 また、過去問と同じ問題は出ないと思われるかもしませんが、ポイントとなる部分が同じ、つまり傾向に沿った「似た」問題はよく出るので、過去問演習はとても効果的な志望校対策といえます。 早めに過去問演習を始めた方が、より早く自分の弱点に気づくことになり、余裕を持って対策を立てられるので、今から取り組み出して良いかと思います。 具体的な進め方ですが、はじめのうちは、得意な分野からでも、近い年度からセットで解いていっても、好きなように進めればいいと思います。(直前期の演習用に、最近の2、3年度分は残しておくことをお勧めします。) 時間制限も秋ごろまではかけなくていいと思います。 とにかく、 🔆その問題がどの種類の問題なのかを考える (多くの過去問集には難易度指標がついているのでそれを参考にしてください。鉄緑のものが詳しくて良いと思います。) 🔆標準問題を通して基礎知識の応用方法を吸収していく (重要なポイントをまとめているのはとてもいいと思います!自分も大事だと思ったところをルーズリーフに書き溜めていき、試験前にはファイリングしたものに目を通していました。) 🔆基礎問題や標準問題が解けなかった場合、どうして解けなかったのかを考え、次に同じようなところで詰まらないようにするにはどうすればいいか考える 🔆基礎知識の抜けに気付いた場合は、適宜チャートを見返したりして復習する といったことを意識して進めてください。 注意点としては難問の復習に時間をかけすぎないことです。必要最低限の知識だけ吸収してとばしましょう。 色々と書きましたが、この辺りのことは「受験の叡智」という本に、より詳しく、説得力のある形で書かれているのでぜひ読んでみてください!
東京大学文科二類 にゃん
7
7
文系数学
文系数学カテゴリの画像
発想力をつけるとは(整数他難問)
やはり多くの問題に触れることが1番だと思います。特にあまりできない感触のある分野が分かっているのであれば、それを重点的にしてみてはどうでしょうか?(整数分野ならマスターオブ整数などがあります) 付け加えると、問題の誘導に上手に乗ることも問題を解く上ではとても大事です。その小問は何のためにあるのか、など考えながら解いてみてください。 さらに整数分野に限っていうなら、適当な数字を当てはめて実験してみるというのもかなり大事で、そこから規則性を見出すことができることもあります。 さらに、時間に余裕があれば1つの問題に対する複数の解法を考えてみたり、なかなか解けない問題でも何日もかけて考え続ける、というのもおすすめです。 また、過去問をたくさん解いていけば、どういう考え方が求められているかもわかると思いますので、ぜひ試してください。
京都大学医学部 Yu
3
2
理系数学
理系数学カテゴリの画像
初見の問題が解けない
初見の問題が解けるようになるための 数学の参考書と勉強法について紹介します! まず、初見の問題について これを2つに分類します。 ① 基本問題だが自分にとっては初見の問題 ② 応用問題で多くの人にとって初見の問題 まず、①について 基本問題の演習を繰り返し、 基礎固めをしてください。 具体的な方法は下に書いておきます! 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、①の基本問題に関する『オススメ教材』ですが 全範囲を満遍なくカバーし、 数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 問題を解くときの考え方まで紹介しているので、 基礎固めはこの教材を何周もすれば十分です! 基礎問題がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 加えて、青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! 次に②の応用問題を解く力を身につける 演習用のオススメ教材としては以下の教材がオススメです! ・1対1対応の数学 ・プラチカ ・やさしい理系数学 最後にに『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください! やり方を忘れた時に見返してくれたら幸いです。
慶應義塾大学理工学部 チェンパン
64
4
文系数学
文系数学カテゴリの画像
数学のできる人
初見の問題が解けるようになる数学の勉強法について話しますね。 まず、初見の問題は大きく分けて2つあります。 ① 基本問題だが自分にとっては初見 ② 応用問題で多くの人にとって初見 まず、①について 基本問題の演習を繰り返し、基礎固めをしてください。 具体的な方法は下に書いておきますね。 次に、②について 応用問題は基本問題の組み合わせです! なので、身についた基礎をどの場面でどう使うか考える練習をしましょう! これも具体的な方法を下に書きますね。 上の①②に対応する 数学の『オススメ教材』と『オススメ勉強法』について紹介します。 まず、『オススメ教材』ですが 全範囲を満遍なくカバーし、数学の基礎力向上に最適な教材として ・青チャート1A2B をオススメします! 解答解説がしっかりしていて、 なおかつ、問題を解くときの考え方まで紹介しているので、基礎固めはこの教材を何周もすれば十分です! 基礎がしっかりできていれば、 全国の受験生が受ける模試であれば 偏差値60〜65程度は到達可能です。 青チャートを完璧にすると 模試の時にどれが基本問題でどれが応用問題かわかるようになりますよ! 次に、青チャートが終わったならば 今度は身についた基礎を使う練習 つまり、応用問題を解くために基礎をどの場面でどう使うかを練習しましょう! この演習用として ・1対1対応の数学 ・プラチカ ・やさしい理系数学 などがオススメです! 次に『オススメ勉強法』ですが 青チャートを使うかどうかに関わらず、 問題の考え方や解答を理解した後に解答を見ずに 最初から最後まで自力で再現してみることが大切です。 ここで、再現できないようであれば、 まだまだ理解が足りてないということです。 つまり、 問題を解く ↓ 考え方と解説を理解する ↓ 解答を見ずに、自力で再度解く この3つのことを繰り返すことで飛躍的に数学力が上がります! ぜひ、実践してみてください!
慶應義塾大学理工学部 チェンパン
85
8
理系数学
理系数学カテゴリの画像
青チャートができない
ずーさん、初めまして! 青チャートって星が多くなるとけっこう難しいですよね。私も青チャートを重宝していたので気持ちわかります。 ただ、問題集は変える必要はないかなと思います。青チャートは個人的に1番オススメです!基礎固めにも役立ちますし、応用的な問題まであります。 そして星の高い問題も、実は変わった問題と言うわけではなく、難しい大学の入試問題ではベースとなるような問題ばかりです。 イメージとしては、比較的偏差値の低い大学の入試問題は星の低い問題を基礎として派生して問題が作られていて、京大などの入試の問題は青チャートの星の高い問題を基礎としてそこから派生して問題を作っていたりします。 なので青チャートの問題は、解答のやり方を覚える、と言う感覚で使う方がいいです。あの参考書はそれぞれの問題の形に対する解答のベースを学ぶためのものだと思ってます。 入試や模試の問題では、青チャートで作った解答のベースから自分なりに工夫したり、応用したりして解答します。 おそらく、3、4回解いていても解けないと言うことは、模試の問題のような感覚で解いているのかなと思います。 一旦そこの感覚を改めて、覚える、ということに重点を置いて答えを見ながらでいいので解いてみてください。 数学って成績が最初はなかなか上がりにくくて、不安になりやすい科目です。 私が思うのは、数学は解答のパターンを早く構築した人から成績が上がっていきます。 よく言われるのは、高校入試の数学は暗記で、大学入試の数学では暗記ではどうにもならない、と言われます。 それは一部あっていて、一部間違っています。 大学入試も解答のベースは全て暗記しないといけないです。 この分野の問題ならこうゆう解き方みたいなのが瞬時に三パターンほど頭に浮かび、そこから 「α解法は使えなさそうだから、βパターンにしよう!」 とか、 「α解法は少し計算が複雑になって時間がかかりそうだから、β解法にしよう!」 と言うふうに考えれるようになるのがパターンの構築です。 そして、そのパターンをほとんど全て勉強できるのが青チャートだと思っています。 なので、青チャートの解答は覚えるつもりで解いて、ノートか何かに解き方のパターンをまとめるといいかなと思います。 そこでアドバイスとしては、同じような問題でも解答の仕方が違うことがありますよね。そうゆう時は、何故その解き方にしたのか、を考えるようにしてみてください。 これがあるからこっちの解法は使えず、この解き方なんだと言うふうに分かったら、またそれをノートにメモしておくと便利です! 長くなってしまいすみません🙏 私も高3の夏はなかなか成績が上がらず焦っていました。でもそれでも頑張って勉強していると秋から冬にかけて成績がぐんと伸びると思います! 応援してます!無理のない範囲で頑張ってください😀 京大のことなんかで質問があればまたぜひ聞いてください!
京都大学工学部 さかさか
27
6
文系数学
文系数学カテゴリの画像
高3数弱のための青チャの進め方
こんにちは! 僕も数学が苦手な理系受験生でした。 結論から言うと、範囲は入試に出る順・苦手順にやっていけばいいと思います。 理系の2次で数学12だけを使って解く難問はまず出ないのでその範囲は1番優先度が低いです。というかやらなくていいです。1番よく出る&演習量がものをいうのは数3だと思うので、まずは数3をやってみてはいかがでしょうか?中でも特に微積がおすすめです。僕が受験生の時は、例題と練習問題だけやって章末問題とかは難しかったので基本飛ばしてました。その後は数ABで苦手なところかつ志望校に出がちな単元をやることをおすすめします(例えば毎年1問は確率漸化式が出る、とか)。その場合は青チャじゃなくてその単元だけがまとまった問題集でもいいと思います。結局は過去問をどれだけやれるかで合否が決まると思うので、青チャはあくまで過去問に取り組むにあたって最低限の実力を身につけるだけのツールです。完璧にこなす必要は全くなく、ある程度基礎を身につけたら夏休み明けからは過去問演習に入ってみることをおすすめします。 まとめると、 ①数3(特に微積) ②数A, Bで苦手なところ(確率など) の順番で例題と練習問題だけざーっとできてれば夏休みの目標としては及第点だと思います。 数学が出来なくても、極端に足を引っ張らなければ割と合格出来ます!難しい問題は捨ててもOKです。簡単な問題を確実に取れれば大丈夫です。頑張りすぎない程度に頑張ってください!応援してます!💪
東京大学理科二類 こかす
8
0
理系数学
理系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
235
33
理系数学
理系数学カテゴリの画像
勉強方法
もともと数学は好きで得意だと思っていましたがある時スランプに陥ってなかなか成績が上がらなくなった時がありました。ある分野が全く出来なかったので、その時の勉強法を話したいと思います。 まず、教科書をじっくりと読みました。簡単な例題も読んだあと自分で解きました。分からないところは友人や先生に何度も質問しました。ある程度基本的な事項が抑えられたと思ったら問題集の簡単な問題を完璧にして、少しずつ難しい問題に挑戦しました。でもここでも躓いてなかなか前に進むのに苦労しました…そんな時は間違えた要因を探しました。たとえばこの公式を正しく覚えられていなかったから出来なかった、この発想が出来なかった、などです。 私は数学を本番で武器にしたかったので、徹底的にやりました。苦手な分野も典型的な問題は必ず出来るようにしました。 ある程度問題のパターンを暗記してしまうのもいいと思います。本番でぱっと思いつくためにはいろんな問題を解いてみていろんな発想を知ることが必要だと思います。頑張ってください!
慶應義塾大学理工学部 sk__8
41
0
理系数学
理系数学カテゴリの画像