UniLink WebToAppバナー画像

数学

クリップ(7) コメント(1)
5/28 18:23
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

taccccchi

高3 東京都 法政大学志望

今までは公式の通りに当てはめてやって定期テストではいい点数を取れていたのですが、いざ受験勉強となるとやったことある問題でもなぜこのようになるのかわからなくなってしまいます。 これはこうゆう問題だからこうゆうふうに解こう、で良いのか、なぜこのような式になるのか自分がわかるまで悩んだ方が良いのか、 どちらの方を受験された先輩方はしていましたか?? また、理論がわかるまでやるとなったら今からでも間に合いますか??

回答

takuto

慶應義塾大学経済学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
理論は公式の証明くらいで良いです。 問題は数学といえど解法暗記が1番の近道です。マーチ志望であれば、解法暗記だけで乗り切れると思います。今やってる問題集を繰り返し解き、問題を読んだら答えまでのルートが頭の中で見えるようになるまでやりこみましょう。そうすれば多少違う問題に当たったとしても、ルートが見えるようになってきます。 この多少違う問題に当たってもルートがわかるようになるような実践的トレーニングはまだしなくていいです。今は自分の解法の種類を増やしましょう!

takuto

慶應義塾大学経済学部

20
ファン
18.2
平均クリップ
4.4
平均評価

プロフィール

受験勉強開始時(高3 4月) 偏差値 英語34 数学49 国語46 からのスタート 1年間浪人し、慶應義塾大学経済学部に在籍中

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

taccccchiのプロフィール画像
taccccchi
5/28 21:08
ありがとうございます!!!!

よく一緒に読まれている人気の回答

数学の勉強法について
 数弱で浪人した者です。私は、質問者様が現在の勉強法を継続される事を断固支持します。確かに時間が余計に掛かる道ですが、それで問題を解くのが少しでも楽になる事を体感されているのは素晴らしいことですし、それが正しい勉強法です。  さて、この勉強法で間に合うかどうかですが、定理公式が出てきた度に取り組めば受験に間にあわないなんてことにはならないでしょう。むしろ焦って暗記に走る方が何倍も危険です。受験直前になってもなおうわべだけで分かったつもりになっているというレベルの知識は、入試本番では使い物になりません。そんな知識だけで受験に挑むのは落ちに行ってるようなものです。数学はそんなに甘くありません。数学は身につけるもの、そして、身につけるには自分の手を動かして理解していく事を繰り返すしかありません。証明を忘れてしまったら何度でも復習して下さい。私もこれを幾度となく繰り返しました。また、有名な定理公式の導出方法=証明を知っているとあっさり解ける、なんて問題も整数分野などではよくあります。  一つお勧めは、問題の解答を見てとっぴな解法だなあと感じることがあれば、それは問題の基礎的な部分が分かってない証拠だと疑ってみることです。例えば数学が全くできない人に問題を解説してあげるとき、自分では当たり前に感じている箇所で、"なんでそうやんの?"と聞かれたことはないですか?普段の問題の解説集も同じで、解法が自分にとってとっぴに見えてしまったら、その問題の要求するレベルに達してないと判断して間違いないです。質問者様の質問には直接関係ないですが、私が受験経験から学んだことですのでお伝えしておきます。  学問では回り道に見えることが結局は王道です。私は予備校でそれを痛感させられました。めんどくさそうで遠ざけていた定理公式の証明を自分の手で行なって初めて習得できた実感をえました。質問者様の強みは今すでにこの遠回りの威力を知っておられるということです。どうか自分を信じこの努力を続けて下さい。健闘を祈ります。
東京大学理科一類 taka5691
37
2
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
235
33
理系数学
理系数学カテゴリの画像
数学の解き方
初めまして。rockyyyと申します。 数学についての勉強法についてお答えします。 結論から言うと、YNUさんの勉強法は間違ってはいません。何度も解き直して、解法を落とし込むという方法はとても重要です。しかし、時間がかかりすぎてしまうため、時間が惜しい受験期間においてはあまり望ましくないのかなと思いました。 僕は、数学は解答を丸覚えするというよりも、なぜ、その解き方をするのか理解しながら覚え込むということをしたらいいのではないかと思います。例えば、解き方がわからなくて、解答を読んでいるときに「なぜこの計算をしているのだろう」とか、「なぜこの式変形をするのだろう」などを考えるということです。そして、その意味や理由がわかったとき、数学という教科の本質の理解に一歩近づくのではないかと思います。 解法だけを覚え込んでしまうと、なぜこのような計算や操作をしたのかということがよくわからないままなので、少し問題が変わると手も足も出なくなってしまいます。 具体的に、家で数学を勉強するときのおすすめの勉強法としては、第一に、なぜ解答ではこのようなことをしているのかを考えます。そして第二に、それが分かったとき(つまり、これを求めるためにこんなことをしたのか!となったとき)は、「あーはいはい。これをこうするために、こうしたわけね!」などと独り言を言うといいと思います笑。意外と記憶に残ったりします。あと、そのわかったことをノートに目立つように殴り書きなどをしておくと良いと思います。そのノートを日常的に見直していたりすると、着実に力はつくと思います。僕はそうしてました。これで数学は得意になったと思うので、間違ってはいないのではないかなと思います。(あくまで個人の意見です) 数学の問題を解くときは、山登りと一緒です。山頂を目指すためのルートはたくさんあります。要は登り切ることができれば良いのですから、ルートはどれを選んでもいいわけです。つまり、そのルートを学ぶ(これは先述の、なぜこうした計算や式変形をしたのかを学ぶことと同義)ことが大切です。 それさえあれば、例え問題がかわっても、大丈夫なのではないかなと思います。要は、解答でなぜそんなことをしているのかということを理解することが重要です。 今から頑張っても全然遅くはありません。よければ僕の勉強法も参考にしてもらって頑張って欲しいです!応援していますよ!
大阪大学工学部 rockyyy
8
2
文系数学
文系数学カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像
数学の解法暗記
こんばんは。 高校の数学は、おっしゃる通り、中学までの数学と比べると、様々か角度からのアプローチができるようになります。ですが、(少し厳しいことを書くかもしれませんがお許し下さい)名古屋大学を受験するにあたって、解法を一つしかわかっていないようでは、合格への道はかなり遠いと思います。 といいますのも、名古屋大学の数学の入試は文系理系問わず、試験当日全員に、問題冊子、解答用紙に加えて、数学公式集が配布されます。(もちろん公式集には全ての公式が掲載されているわけではありませんが)数学の入試で、公式集が配布されるということは、つまり、「ただ単に、公式に代入して、答えが求められる」ことのできる人を大学が求めているわけではないでしょうし、そのような人が有利な採点はなされないという大学側からのメッセージではないかと思います。 このように考えますと、解法を何通り覚えたかではなく、なぜその公式・定理を使うのかということの方が大切だと思います。ただし、いきなりなぜその公式・定理を使うのかということを意識するとハードルが高すぎる可能性もありますので、まずは、複数解法のある問題に関しては、どの解法が最も計算が楽かや、どの解法が最もミスをしにくいかというような意識で、最終的には「解き方を暗記する」のではなく「なぜその公式・定理を使うのか」というような意識で数学を学習していくといいのではないかと思います。 まだ3年生の5月です。現段階で、駿台模試でC判定をお持ちであれば、このままの調子で勉強していけば、合格できると思いますよ。頑張ってください。
名古屋大学医学部 kai3140
5
1
文系数学
文系数学カテゴリの画像
数学が出来るようになるには?
分からなかったら答えを見てOKです。 私は「自分で解いてみる→つまづいたら答えを見る→見ながら解いてみる→しばらくしてからもう一度解いてみる」というやり方をしていました。使っていたのはIAは青チャート、ⅡBは黄色チャートです。過去問などをやる場合は、少し時間をかけても解けない問題があれば、制限時間を無視して早くに切り上げ、解き直しに移りました。 私は理系ですが、受験で使ったのは文系数学でした。二次試験直前に数日このやり方で数列の勉強をしたところ、数列だけは完答することができました。元々数学が苦手で後回しにしていたところもあったので、もっと早くやれば良かったと思いました。 数学は本当にやればやるだけ伸びます。いろいろな問題を解くことで、それまでは思いつかなかったような解法が頭に浮かぶようになります。また、全ての単元に触れることも重要です。私は試験本番、数列の問題を解く際に数日前に解いていた確率の問題の解法が役に立ちました。 どれだけ問題を効率よく多くこなせるか、これができたらチャートだけでも十分です。余裕があれば1対1なども見てみるといいかもしれません。 がんばってください。応援しています。
北海道大学医学部 水面
7
0
文系数学
文系数学カテゴリの画像
解法を身につけるには
こんにちは。今回は青チャート云々というより数学の勉強について答えていきます。 まず前提として数学は暗記科目ではありません。定義や定理、公式は覚えて身につける必要がありますが、それを覚えたからといって直接点数には結びつかない場合が多いです。だからこそ難しいのですが、、、 ではどうしたら良いか。ということでまず、、、 センター試験レベルの問題は定義や定理や公式を暗記し、一般的な解法を何度も反復することで満点は取れるようになります。センターは教科書レベルのものの理解度を試すものであるからです。ということは、まず当面の目標としてセンターで時間をかけてもいいから満点を安定して取れるレベルを目指しましょう。 青チャートの7割の例題の解法を覚えているなら容易いと思います。 次に、、、 この次の段階に行くにはどうしたら良いかを説明します。例題の中で暗記しやすいものはいわゆる典型問題というもので何かしらの公式や定理を当てはめるだけで答えが出ます。そして覚えにくい問題というのは公式の単純な当てはめでは解けないもの、いくつかの定理を組み合わせなければいけないものです。 これらは典型問題のような解法暗記では解けるようになりません。問題によって考え方を変え、応用しなければならないからです。 応用問題、複合問題では解法の暗記が重要なのではなく、解答のプロセスと問題のテーマが重要です。ですので、1つひとつなぜこの公式を使うのか、解答を得るために何が必要なのかを意識するようにします。「なぜ」という疑問を常にもち、必ず納得して勉強をしましょう。 そしてそのあと、ほったらかしにせず、翌日や翌週などに問題見て頭の中で解答のプロセスを順序だてて辿ります。これは書いても良いですがサラサラとメモっぽくで十分です。とにかく論理だてて、理由をつけて考えるようにします。 そうすることでどのような場合にどのような考えを使えばいいのかがわかるようになってきます。 また、考え方を予め決めておくのもおススメです。 例えば、 図形の問題が出てきたら、 1-三角関数、2-ベクトル、3-初等幾何、4-座標に置き換え、5-複素数平面 の順に考える。などです。そうすることで詰まってもどんどんほかの解法でチャレンジ出来、初見の問題でも解けるようになります。 解法の選び方、論理立てて考える方法、公式や定義や定理の応用の仕方などが書いてある参考書があります。それは「世界一わかりやすい京大の数学」という本です。これは数学の根本に基づく解き方、プロセスが事細かに書かれているため非常に参考になるのでおススメです。京大の問題は思考力を要する問題であるため、数学のレベルアップにはうってつけです。数学1A2Bを一通り学んだものであれば問題なく使用できるので、京大だからと物怖じせずにやることをかなり強くオススメします。僕はこれでかなり偏差値が上がりました。 最後に、、、 数学は簡単に伸びる科目ではありません。できるようになるには長い時間がかかります。我慢して我慢して解法を論理立て考え深い理解をすることで、徐々に解けるようになってきます。 簡単に身につくものは簡単に忘れてしまいます。じっくりと根気よく数学に真摯に取り組むことが遠回りに見えて最短の道のりです。諦めることなく続けていきましょう。 大変ではあると思いますが、必ずできるようになるので最後まで頑張ってください。第一志望の大学に合格出来ることを心より祈っています。
京都大学農学部 白血球
64
6
文系数学
文系数学カテゴリの画像
形式的に覚えてしまう
数学と化学に関しては私も現役の時は心当たりがあります。特に数学はセンス的な要素が強いと思っていたので、解ける解けないの差が激しかったです。 さて、少しひねった問題が来ると解けないのが悩みということですが、まず、最低限の勉強ができていることが大事です。おそらくそこらへんはテスト期間で補っているので大丈夫かと思います。 その中で同じような問題で少しひねっている問題というのはどうすればいいかわからないと思うかもしれませんが、解き方としてはひねる前の解き方と同じようなのに気づくことはできているでしょうか?そのような問題の模範解答をじっくり吟味しているでしょうか?その時解けなかった問題はしょうがないですが、そのあとのフィードバックが大事です。そして、この解法やったことがあるなと感じることが大切です。 具体的に述べるのは難しいですが、例えば二次方程式の2解が正の値をとるための条件は f(0)>0 軸>0 判別式≧0 で必要十分ですよね。これは大丈夫でしょうか? これの少しひねった問題が例えば二次方程式の解が0<x<1の範囲で持つ条件はどうでしょうか? これは場合分けが必要ですが、そのうち2解がともに0<x<1の範囲の時はどのような条件かというと f(0)>0 f(1)>0 0<軸<1 判別式≧0 で必要十分です。これと先ほどの上の条件と比較すると同じような感じですよね?つまり端点のみに具体的な数字の条件があるときにこのような条件で進めていくのがセオリーです。 上の解法を知識ゼロから解けと言われたら厳しいものがあるかと思いますが、一通り通っていることなら問題を見たときに「あっ、この問題はこの解法かな?」と瞬時に判断できるはずです。その感覚が大事です。「あー、これどうすればいいんだっけ…?」みたいな感じになっているのは良くないです。 これは勉強する時は問題を解き始める前に一瞬立ち止まって考えください。これを意識するしないとでは雲泥の差です。これは私自身、現役の時には気づかなかったことですが、浪人してからはこのことを意識するだけで、解ける問題のレパートリーが増えました。 闇雲にただ問題をこなすだけなら、むしろその場しのぎになってしまいます。それなら、数学の問題とかは時間がないのなら問題をみてこのような解法でいけばいいかなと思えるなら解かなくていいです。 要は、解き方に“意識“して問題演習を行ってください。時間のかける方はこっちの方です。 模試の前とかは、全国模試であれば定期テストなどでできなかった問題の教科書レベルの類題を確認する感じでいいと思います。高校生は部活等で時間がないと思われますので。
慶應義塾大学理工学部 シュンペーター
21
0
理系数学
理系数学カテゴリの画像
数学の復習方法(難問)
どこの塾かが分からないため、なんとも言えませんが、例えば駿台などの塾オリジナルの問題は解けなくても全く問題はありません。なぜなら入試問題さえ解ければ合格はできるからです。塾オリジナルのものはどちらかというとテクニックや小技を使うものが多く、ほとんどの入試問題は初手を決めて泥臭く解くものです。 では、入試問題を解いた後の復習についてですが、まずは初手をよくよく分析してみましょう。なぜそのアプローチをすれば良いのかが分かれば、類題が出た時に「これはあの問題と同じで、ここを問われているからまずはここをこうすれば…」と方針を立てることができます。 問題文で何が問われていて、そのためには何が必要で、それを揃えるためにどのような式を立てていけば良いのか、問題を解く際はただ鉛筆を動かすのではなくこういったところに注意して解いてみて下さい。きっと今よりも数学が楽しくなります。
東京大学理科二類 ぱいんと
9
2
理系数学
理系数学カテゴリの画像
理系数学の勉強法
こんにちは。rockyyyと申します。 数学の勉強法について僕が思うことをこれから紹介するので、よかったら参考にしてください! まず、数学の勉強をしていて、わからない問題が出てくると思います。その時、「あーわからないから、すぐ答え見た方が効率いいし、そうしよ」と思ってはいけないと個人的には思います。なぜかというとそれでは「自分の持っている知識で、問題を解く」という練習ができないからです。試験というのは、自分が勉強で解いた事がある問題と全く同じ問題が出るわけではありません。なので、数学を得意になるには「未知の問題に対しても、自分が培ってきた知識を使って解けるようになる」という能力が必要です。それは、自分で考えて問題を解こうとする姿勢がないと身につかないと個人的には思います。なので、数学の問題を解いているときに、わからなかったらすぐ答えを見るのではなく、最低でも10分くらいは自分の今持っている知識を使って試行錯誤することが大事ではないかなと思います。 ただ、注意して欲しいのは、別に解説を読むことは全然間違っていません。自分が自分なりにその問題に対してやれることはやってから、解説を読むようにしましょう。そうすると、解説の内容やその意味合いについての理解も深まると思います。「あ、自分はこうやったけど、解説のようにやるともっと効率がいいな」とか「自分がやった方法は、こう言った理由で間違っていたのか」という事がわかりやすくなります。そのためにも一回自分がわからない問題も自分なりに試行錯誤する事が大事だと思います。 また、自分が解説を読んだ後に新しく知ったことや、なるほど!と思ったことは必ず自分の言葉で書き残しておくようにしましょう。これはとても大事です。 以上のことを考えて、数学の勉強法を変えてみてください!きっと成績は伸びると思います。 次に、これからの数学の勉強スケジュールについてですが、僕は全部の分野をやる必要はないと思います。模試の結果からわかっている自分の苦手分野を重点的にやると良いと思います。もし自分の苦手分野があまりわからなかったら、数学の問題集の基礎問題を解いてみましょう。その分野のすべての問題をやる必要はないです。基礎問題があまりにも解けなかったら、その分野についての理解が足りていないということなので、そこはまた重点的に勉強すれば良いと思います。 以上になります。最後にもう1つお伝えしたいことが、数学は暗記科目ではないということです。解法を丸暗記しても問題が解けるようにはなりません。解説を読んで、「なぜそうなるのか」「なぜこのような解き方をしているのか」「なぜ自分の解き方ではダメなのか」ということを学ぶ事が大切です。数学が苦手な人は大抵が丸暗記をしようとしている人なので、一応お伝えしておきました。勉強法を変えれば、しっかり知識も定着して、数学が解けるようになると思います!受験応援しています!
大阪大学工学部 rockyyy
9
2
理系数学
理系数学カテゴリの画像