UniLink WebToAppバナー画像

数学の公式はすべて覚える?

クリップ(6) コメント(0)
4/11 23:41
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。
相談者のプロフィール画像

Mr.茶碗蒸し

高1 東京都 早稲田大学志望

数学が強いひとというのはやはり数学の公式は全て暗記してるものですか?

回答

回答者のプロフィール画像

tiga

京都大学理学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
はじめまして。僕は大学受験を研究してるわけではないですが、一受験生としての経験の話をさせていただきます。 数学において、定理や公式を定着させることは重要ですが、すべてを覚える必要はありません。解を得るのに必要不可欠なものや様々な設問で使うものから、ある限られた条件のもとでしか使えないものまであります。もちろんすべて覚えるのに越したことはないですが、それよりも解の導き方や論理的思考力の方が大事です。定理さえ覚えれば大丈夫というわけではありません。解を導くためにどの定理を使うのが良いのか、その定理を使えるのはどのような条件のもとなのか、または本当にその定理は必要なのか別解はないのか、という研究が大事です。 「数学がわかる」「問題が解ける」「点数が取れる」はすべて似て非なるものです。まずは定理の定着と研究を重ね、数学がわかる事と問題がとける事を目指しましょう。まだまだ先は長いですが、頑張ってください!
回答者のプロフィール画像

tiga

京都大学理学部

10
ファン
28.6
平均クリップ
5
平均評価

プロフィール

公立高校出身 塾には通わず、独学で京都大学理学部に現役合格 ちなみに理科の受験科目は化学と生物 得意科目は数学、化学、生物

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(0)

コメントで回答者に感謝を伝えましょう!相談者以外も投稿できます。

よく一緒に読まれている人気の回答

東工大志望校高二です。
めっちゃわかるわ〜!!!!その気持ち。 定期考査の時は問題覚えてるからスラスラ出てくるんだけど、数ヶ月後の模試になると出て来なくなっちゃうんよな… 公式っていっても覚えたほうがいいのと覚えなくてもいいのがあるよね。それについて少し下に書こうかな。 三角関数の定理とか公式とか結構色々あるよね。和積の公式とか積和の公式って覚えさせられるかと思うけどあんなの覚える必要はないからね。加法定理さえ覚えてれば全部導けるから。 定期テストで完璧に覚えるべきなのは「定理」ね。 これは「Apple」って言われたら頭の中で「りんご」が浮かぶくらいに当たり前にすることが大事。「加法定理」って言われたらこんな形だな〜って頭の中で浮かんでくるようにすること。 逆に「公式」は定理さえ覚えてれば問題用紙の端っこに書いて出せるからおぼえなくていい!導き方だけ3.4回練習しとこ? 人間だから全部の公式を完璧に覚えるのってすごく大変だと思う。ただでさえ君は国立を目指して科目数も多いから他にも暗記することが沢山だと思う。一回試してみて自分に合うやり方を見つけて見てね!
東京工業大学物質理工学院 yuya
1
2
理系数学
理系数学カテゴリの画像
数学の勉強法
数学には定型パターンがあります。 問題と解き方を覚える、という丸暗記ではなく、 どういう問題の時にどういう解き方をするのか という思考パターンをしっかり身に付けるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 そのためには教科書や授業ノートを使って、習ったことを完璧にしてください。 そして覚えたことは基礎問題でアウトプットします。 これを繰り返し、解法がわかった段階で応用問題に挑戦します。 基礎がしっかりできていれば、応用がまったく解けないということはありません。 まだ基礎の理解力が足りていないので、理論を理解することを意識してください。
名古屋大学工学部 けろちゃん
1
0
文系数学
文系数学カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像
定期テストや模試で数学を得点源にするには
私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
18
0
理系数学
理系数学カテゴリの画像
答え見てもわからない問題
こんにちは!東工大理学院のひろと申します! 数学で、答えを見ても分からない問題がある時の対処法をお伝えしようと思います! まず、教科書に載っている基本事項が抜けていないか確認しましょう。大抵の問題は基本事項を抑えることが出来ていれば、解説を読めば理解出来るはずです!それでも分からないという場合は数学の先生に聞くなどして解決しましょう。その際も、ここまでは理解できたが、その先が分からないという聞き方をするとスムーズで仕事が早いでしょう。 では、教科書に載っている基本事項を抑えるとはどういうことなのかをお伝えします。まず、大切なのは公式を一通りマスターすることです。もちろん公式の丸暗記はよくありません。なぜその公式が導かれるのかを自分で説明できるようになって初めてその公式をマスターできたと言えるでしょう。実際に僕は公式は無理に暗記せず、なんとなくで覚えて全て導出できるようにしていました。あとは、問題を解いていく中で自然に使えるようになります。覚えようとして覚えるのではなく、使っていくうちに覚えるのが効率が良いと思います。また、公式をマスターした後に解く問題は教科書の例題程度で構いません。教科書の例題は舐められがちですが、重要な例題が沢山載っているのでしっかりマスターしましょう。その後は、教科書の章末問題、網羅系参考書といった順番で進めていくと良いでしょう。僕は網羅系参考書でFocusGoldを使っていました。この流れで進めていけば大抵の問題で解説を理解することは可能だと思います。(初見で解けなくても) 大切なのは、丸暗記しないことです。数学は暗記科目ではありません。必ず思考のプロセスがあります。それをおろそかにするといつか難しい問題に当たった時に行き詰まります。そうならないように、日頃から思考のプロセスを意識して数学の勉強をしてください。思考のプロセスとは、何故そのような変形をするのか、何故その公式を使うのかなどのことです。これを説明できるようになると、数学の力がどんどん上がっていくでしょう。 最後に、何故そうなるのかを意識しながら数学の勉強を進めてください。分からないことがあれば基本事項に立ち返って、周りの人に頼りながら頑張ってください!良い結果が出ることを心から祈ってます!!
東京工業大学理学院 ひろ
0
1
理系数学
理系数学カテゴリの画像
数学公式
文系ですが答えさせてもらいます。(数学は使ってました) 今でもそうなんですが、公式の仕組みが納得できないと個人的には気持ち悪くてしょうがないんですよね。 どうしてこの公式になるかを納得する →公式を暗記 →実際に公式を使って、使用方法と公式を頭に定着させる こんな感じですかね。 理由としては、1番はそうじゃないと気持ち悪いっていうのがあるんですが、、、笑笑 でも、実際問題、公式の導出を問われたりする問題ありますし、また、公式の仕組みが分かってないと解けないような問題も一定数あります。 特に、三角関数・微積分・シグマ計算あたりの公式は導出過程を理解できてると、数学的な思考力の幅が広がるイメージあります。 もちろん、導出過程を知らなくていいのもあります。でも、一回は導出にチャレンジしてみるといいです。それで、「あー、これは公式だけ覚えておけばいい感じかな?」みたいなやつもたくさんあります。導出過程がめんどくさかったりするから、わざわざ公式にされているんで、それを覚えてしまうこと自体悪いことではないです。 公式の結果だけを覚えておくパターンのやつは、とくに物理・化学に多い印象ですね。「実験の結果、こうなった」とか、「この公式を定義とする」みたいのは、理科系では多いです。そういうのは、あまりこだわらず、一回くらい説明書き読む程度でいいと思います。
慶應義塾大学商学部 タイ
4
2
理系数学
理系数学カテゴリの画像
物理の公式をただただ暗記したくない
定理(公式)を暗記するかどうかはサクラサクさんの力量次第だと思います。 そもそも物理法則は人間が生活する中で考えた知恵を数式的に定義づけて、定理(サクラサクさんが言うところの公式)として使いやすくしているものだと思います。あんまり突っ込んだことを言うと物理の専門の方から怒られるかもしれませんが認識として持っていて欲しいのは、定義は必ず理解しなくてはいけませんし、定理を導く事ができない人は覚える(覚えるというより問題を解きながら理解する事で自由に使えるようになると言う表現の方が近いと思います)必要があります。 例えば運動方程式f=maはもともと人間の経験則からニュートンが定義したものなので覚えるのが嫌だとしたら、自分で実験をしながら導くしかないです…天才じゃなきゃ無理ですね。 定理で言うと例えば速度の式なんかは、加速度が速度の微小変化という定義さえ知っていれば定理はそれを積分すると出ますよね。(積分を習っていなければグラフ化して導出して考えると良いと思います。) どちらにせよ何度も導出している間に覚えてしまうのでそれをそのまま使うことになると思います。丸暗記でなにも考えずに公式に当てはめるのはお勧めしませんが、導出出来るものはしながら解いて慣れてきたら時間を短縮するために必要な公式を使うのが良いんじゃないでしょうか。
東京工業大学物質理工学院 yuya
9
2
物理
物理カテゴリの画像
公式の証明について
こんにちは!回答させていただきます。 公式の証明を覚えているとどう役に立つかということですが、正直、受験に合格するという観点では公式の証明問題が解ける以上のメリットはあまりないです! 公式の証明では、受験数学のセオリーからみれば特殊な考え方を使うものが多く、考え方が他の問題に役立つ事も少ないのです。 数学という学問を修める意味では、公式の証明を理解していることは重要だと思いますが。 しかし、本番で公式の証明問題が解けるという一点だけで、覚える理由としては十分ではないでしょうか? 実際の入試でそういった問題が出ているわけですし。4完を狙うなら公式の証明問題は落とせませんしね! 余談ですが、三角関数の和積の公式とか、ベクトルの内積を使った三角形の面積の公式とかを、もし暗記せずにテスト中に導こうと思ってるなら、それはダメですよ!時間がもったいないですから。これはマジです! 長文失礼しました。頑張ってくださいね!
京都大学農学部 PaNDa108
5
2
理系数学
理系数学カテゴリの画像
数学の勉強の仕方 高校数学が苦手
⑴ 数学を学ぶことの目的は何か  およそ勉強をするにあたって、今自らが学びつつある学問が目的としているものが一体何であるのかを明確にすることは、いかなる内容の学習の際にも必要となる基本中の基本事項です。というのも、それがわからなければ、教えられることや教科書に書いてあることを暗記するよりほかに学習のしようがなく、結局いつまでたってもその学問について理解できる段階には至らないのは当然だからです(この勉強における目的意識の重要性については、末弘厳太郎先生の著書を読んだときに大いに感銘をうけた部分であり、私の勉強観の根幹を成しています)。  ことに高校数学に至っては、その目的は「数学的に思考する力の涵養」であると言えましょう。微分や積分、指数対数、三角関数など、日常生活でこれらの知識が生きることはまず少ないでしょうし、ともすると、それらをはじめ数学的な知識の習得が目的としてあるとは考えにくい。にもかかわらず、数学において数学的な知識を習得させられるという実態を考慮すると、数学的な知識を習得することは目的ではなく手段であり、真なる目的は、与えられた問題をそれを使っていかに解決していくかという段階にあり、すなわち、数学的に物事を考えて問題の解決に取り組むその能力を養うことにあると考えられます。模試などの記述問題でも、解答部分よりもそれを導き出すまでの過程を重視して採点されることと思いますが、それもこのことを証左しているのではないでしょうか。  では、数学的に物事を考えるとはどういうことをいうのかと問えば、(私は専門家ではないので適切な答えであるかどうかは定かではありませんが)それは恐らく、その場に適切な規則、原理(いわゆる定理や公式)をうまく活用して問題の解決を図ることだ、と考えられるでしょう。この点で数学は、事実を基にその場その場に適当な法理を見出し、それを使って問題の解決を図る法律学と似通っている部分があると思います。ただ、両者を決定的に異なるものたらしめる点は何かというと、裁判官による法理の解釈によって結論に一定の幅が出る法律学に対し、数学の規則は常に客観的に不変であるということ。これが、かえって数学における問題解決を簡単にする場合があるということです。 ⑵高校数学の学習態度  脱線が過ぎました。このように考えてみると、公式や定理を理解し、頭に入れることは単なる手段であり、実際にこれを活用できなければ意味がないということがわかるはずです。したがって、数学学習で最初に努めるべきは、公式・定理の理解です。数学Ⅱ、数学A、数学Bをこれから先取りで学習しようと考えていらっしゃるようですが、これらに限らず、現在学んでいる数学Ⅰについても基本は一緒です。まずは教科書に出てくる公式や定理を理解することを心がけるとよいと思います。教科書にはそれらの証明、すなわちなぜその定理・公式が成り立つのかについても書かれていると思いますので、自分で証明でき、また人にそれを説明できるほどになれば立派なものです。  単純に暗記するだけでは危険です。受験勉強ではとかく効率が求められがちですが、そうやって小さな部分を見落としても、本番でそれが問われて見事に足をすくわれるなんてことはざらにあります。いつしかの東大ではsinθとcosθの定義と加法定理の証明が、いつしかの阪大では点と直線の距離を求める公式の証明が出題されています。定理や公式を真に理解していれば、いずれも貴重な得点源となってライバルたちを出し抜くことも成し遂げえただろう問題です。こういった問題は、いつどこで出題されるか分かりません。 ⑶問題演習の取り組み方  さて、公式・定理を頭に入れるためには、同時にそれを正しく使える力も養う必要があります。上述したように、高校数学の目的は「数学的な思考能力の涵養」であり、いくら公式や定理を頭に入れてもそれを正しく使えなければ問題解決は難しくなります。なので、同時に問題演習にも取り組みましょう。最初は教科書に載っている基本例題から、だんだんと練習問題、章末問題、そして問題集の応用問題へと段階を踏んでいきます。問題演習を通じて、どういったところでどんな規則がどのように使えるのか、またなぜそのように使えるのかということを自分自身で見極めることを心がければ、複雑な問題にも対応できるだけの発展的な思考はおのずと身についていきます。 ⑷問題集  チャートについては、使ったことがないので色と難易度の関係などよくわかりませんが、高校1年生の初期から使うくらいですから、Focus GoldやNew Action(名前はうろ覚え)などと同じようなものだとしておきます。私の高校では、日々の課題は教科書や学校の問題集(4STEP)、長期休暇の課題として
北海道大学法学部 たけなわ
3
0
文系数学
文系数学カテゴリの画像
東大数学
解法を覚える勉強は全くお勧めしません。 君のいう通り、解法を覚えれば公式を覚えれば問題は解けるかもしれませんが、それは教科書の例題や、参考書の優しいレベルの問題ですよね? ましてや、目指すところが東大なら絶対にやめるべきです。公式っていうのは麻薬みたいなもんで、一回使うと解ける気になり何度も何度も使っているうちに結局現象や本質が何なのかわからなくなり、後戻りできなくなります。 近年東大数学、理科などは易化傾向にあるとよく言われますし、事実僕が受けた年も数学なんてすごく簡単になっていたと思います。 ただそれは解法暗記などで解けるということではなく、数学の本質を理解した上で自然な考え方で解けると行った意味です。 では、どうすればいいのか? 僕は進学校に通っており周りに僕より優秀な友達が沢山いるという恵まれた環境であったため質問すれば答えが返ってきていました。 おそらく君はそういった仲間を得るのが難しい環境にいるんだろうと思います。 1つできる解決策は予備校、塾などに通うことです。 自分より優秀な仲間や、先生が疑問を解決してくれることでしょう。 それも難しいとなれば、アドバイスできることは、今までより一問一問を大切にしてください。 問題が解けない→解答を見る→それでもわからない→放置...これではいけません。 せめて 問題が解けない→解答を見る→解答のどこまではわかったか、どこがわからないか吟味→明確化された疑問点について参考書を読む このくらいはしてほしいです。 もし、それでもわからない場合はそれは仕方ないです。でもその時も、例えば問題に目印をつけ、解答のわからない部分にマーカーを引くなどして疑問であったことを覚えておいてください。 明日になれば、「何だこんなことか」とわかるかもしれませんし、時間が経って君が成長した時にようやくわかるかもしれません。 疑問があることは財産です。それをできる限り活かせるように意識してみてください。 頑張って!
東京大学理科一類 ゆかい
14
2
理系数学
理系数学カテゴリの画像