UniLink WebToAppバナー画像

数学の理解の仕方

クリップ(10) コメント(1)
8/7 0:53
UniLink利用者の80%以上は、難関大学を志望する受験生です。これまでのデータから、偏差値の高いユーザーほど毎日UniLinkアプリを起動することが分かっています。

にこらん

高2 東京都 早稲田大学志望

現在高校2年生のものです。数学の問題を解いていくうえで、自分は数学を理解して解いているのではなく、解法をただ覚えてるだけ(解法の理解が薄い)で解いてるように感じられます。そこで、このやり方ではいけないと、理解する勉強法にしようと思ったのですが、まず、数学においての理解するというのがいまいち掴めません。駿台の全国模試でも偏差値48と50を切ってる状態です。そのため、数学における理解というのを詳しく教えて欲しいです。よろしくお願いします。

回答

ryo-san

早稲田大学教育学部

すべての回答者は、学生証などを使用してUniLinkによって審査された東大・京大・慶應・早稲田・一橋・東工大・旧帝大のいずれかに所属する現役難関大生です。加えて、実際の回答をUniLinkが確認して一定の水準をクリアした合格者だけが登録できる仕組みとなっています。
1つの問題の解法の原理を理解して100問1000問の問題を解けるようにするのが理解 その答えに至る過程の原理を1つ1つ理解する なぜここでこれを求めるの? なぜこんな回りくどいことするの? ここがわかることで答えにどー繋がるの? 疑問を持ってその理由を考えて理解する 理解したと思ったら日を改めて解法の原理を考えながらもう一回解く 類題にも手を出だす それが難なく解けてればそれが理解 早稲田の理系志望ってことでいいのかな? この辺の大学になると見たこともない入試問題が普通に出てくる これが解ければ本当の理解 基本を絶対に抑えるってことも重要だよ 頑張ってね

ryo-san

早稲田大学教育学部

12
ファン
4.6
平均クリップ
4
平均評価

プロフィール

早稲田大学教育学部理学科に在籍しているものです。創造理工学部落ちですが現役一般生です。 早稲田大学でお待ちしております。 ✳︎追記 最初は優しく丁寧にやろうと思ってましたが、段々口調が悪くなって端的かつストレートに回答するようになってきました。ただ回答は自分の実際の経験を元に考えた上でしているので、多少のテキトーさはご容赦ください。

メッセージとコーチングは、UniLinkで活躍する現役難関大生から個別に受験サポートを受けられる、UniLinkの有料サービスです。どちらも無料体験できるので、「この人についていきたい!」と思える回答者を見つけたらぜひご活用ください。

メッセージは、全ての回答者にダイレクトメッセージでいつでも直接相談できます。メッセージ数に制限はありません。

コーチングは、希望の回答者があなた専属のオンラインコーチ・家庭教師になります。週に一度のセッションを通して、勉強スケジュールの調整やモチベーションの持続をサポートします。
UniLink パンフレットバナー画像

コメント(1)

にこらん
8/9 7:30
ありがとうございます!頑張ります!

よく一緒に読まれている人気の回答

初見で解けるようになるには
こんにちは! 早稲田の理系志望ということで、おそらく悩みは数学か理科だと思うので、どちらも対応できるよう回答させていただきます。 ・数学 数学ですが、解答を見れば理解できるということで、基礎的な問題の解き方は抑えられているのだと思います。 応用問題は基本的には基礎問題の組み合わせでできていますので、「今まで解いた問題の中でこの問題に似た問題はなかったか」「問題文のこの部分を数式に訳すとどうなるか」という多方向の視点からまずは問題を見るようにしましょう。それだけでも変わるはずです! そして、この視点からの考え方の見につけ方ですが、やはり問題演習の量が必要です。また、1つの問題に対してじっくり考え、多方向の視点から見ることができるような耐久力と思考力が必要になります。基本的な問題は覚えるのにそこまで時間はかからなかったかもしませんが、ここは時間をかけていきましょう。 1度考えた問題については、あまりに変な問題でない限り考え方を覚えた方がいいです。応用問題にありがちな考え方などもありますし、似た問題が出る可能性もあるからです。 また、知っているかもしれませんが、僕自身はYouTubeの「PASSLABO」というチャンネルの数学の動画をよく見ていました。1つの問題だけではなく、ほかの問題に繋がる思考のポイント(特に整数など)を効率よく学べるので、疲れた時に見るのがかなりオススメです。 ・理科 理科は数学とは違い、思考力のようなところを鍛える必要は数学ほどありません。それよりはとにかく問題演習量を積みましょう。 理科は問題演習をすればするほど伸びる科目と言われます。それは、発展的な問題がそのまま問題文違いや数字違いで出ることが多いからです。これは、理科が数学ほど計算メインの科目ではなく、知識と計算が半々で重要であることに起因します。 ですので、もちろん過去問演習などの時には1問1問じっくり考えて、今までやった問題で似たものは無かったかなど考えるのは大事ですが、問題集で全く分からなかったものは潔く解答を見て理解することが大事です。同じような問題を別の問題集でまた解いてみる方が懸命でしょう。
九州大学経済学部 riku
13
5
過去問
過去問カテゴリの画像
応用力
入試の数学の問題には2パターンあると思っています。 1° パターン化された問題(典型問題) 2° パターン化されていない問題 です。そんなに難しくない問題を出題する大学では、1°の場合が多く、1°の対策としては解法を覚えてしまうという手段があります。 しかし、いわゆる難関大は1°よりも2°を出題しないと受験生間で差がつきません。よって2°を出題します。 2°の問題は解法を覚えても意味がありません。では2°を解くためにはどのようなことをすればいいのか? 数学の問題を解く際、 問題を理解→解くための計画→計画したことを実行→自分の答えを見直す という流れで問題を解いていきます。 1°の問題では暗記している場合、 覚えていることを実行→自分の答えを見直す という解き方をしているため、2°に太刀打ちできません。 2°の問題を解くには 問題を理解→解くための計画 をする練習が必要です。 そのためには、 まずチャート式などの数学の基本事項が分かっている、理解している必要があります。 それを2°タイプの問題を解いて練習を積み重ね、思いつく手段を実行し、基本事項を組み合わせて問題を解いていきましょう。 数学は暗記する部分もありますが、それだけでは難関大には対応できません。頑張ってください。
京都大学薬学部 ちぇるゆう
4
0
理系数学
理系数学カテゴリの画像
数学の勉強法
はじめまして!東京大学理科一類の者です。 数学に悩んでいると言うことなので、数学の勉強方法をご紹介させてください! まず基礎的な話として、各項目の公式、定理を洗い出してみてください。次には、その公式や定理の証明や導出が行えるのかと言うことを考えてみてください。証明や導出は教科書やネットにのっていますので、確認したい場合は使用してください。公式や定理の証明や導出を行えるようにすることで、どの定理と定理が密接に関係しているのかやその式の本質的な意味が理解できるようになるはずです。 例えばですが、余弦定理の証明をしようとしたときに、三平方の定理を使用することになると思います。ではその三平方の定理を証明できるか?と言った具合に、どの定理にどの定理が絡んでいるかを確認することができます。また定義と定理の違いを再認識できるはずです。(結構重要) 次に問題集の使用方法ですが初見の問題を解いた後、自力で解くことのできた問題も含めて、解答で使用している計算操作に対して、「なぜその操作を選択したのか(どんな結果をみたい・得たいからその操作をしたのか)」という根拠を持っておくことが大切です。 この訓練を常時意識して取り組むことで、難問にぶつかったとしても闇雲に手を動かすのではなく、最速で私的にその問題を切り崩していくことが可能になるはずです。 どのような難問でも基本的には、基本問題の絡み合いなので、「どの基本問題が組み合わさってこの問題は構成されているのだろう?」ということを意識するのがいいかと思われます! 参考書の復習の際は、すべての問題を再度手を動かして解く必要はありません。再度手を動かして解く必要があるのは、その問題を読んである程度の時間が経っても解法が浮かばない場合です。この場合の解法とは、計算のことではなく先ほど述べた基本問題への分解ができるかという意味です。 解法が浮かんだ場合は、実際に解答と照らし合わせてみる程度で大丈夫だと思います。 以上が私のおすすめの数学の勉強法になります。 以前解けるようになったはずの問題が時間が経てば解けなくなっているとのことだったので、本質的な理解につながるような勉強方法をご紹介しました。 是非参考にしてください!
東京大学理科一類 ryu031ki
27
12
文系数学
文系数学カテゴリの画像
数学の点の取り方
数学の苦手な人の為に 数学の克服法について話しますね! 数学は英語や社会に比べて覚えることが少なく、 考えることが多いから難しい。 どうやって考えたら良いかわからない といった相談をよく見かけます。 これは半分合っていて、 半分間違っている認識だと思います。 実は数学はある程度、 暗記科目である一面があります。 例えば、典型的な問題の解き方や考え方を理解していないと、その問題の類題は解けないということです。 なので、これらの典型的な基本問題は 覚えるべき問題、暗記すべき問題と捉えることができます。 ただし、ここで言う暗記とは 丸暗記ではなく、理解を伴った暗記であることに注意してください! どうしてこう考えるのか? どうしてこの式変形をするのか? といった考え方を暗記するということです。 一般的にこれらの典型的な基本問題を組み合わせたものが応用問題とされます。 つまり、難しく見える応用問題をいかにして自分の知っている基本問題の形にするかが差がつくポイントになります。 したがって、数学が苦手だと思う方はまず典型的な基本問題をある程度暗記しましょう! その際は 問題を解く ↓ 解説を読む ↓ 解答解説を見ずに再度解答を自分で作成する の3ステップを意識して問題演習してみてください! これをやるだけで数学はぐっと偏差値が上がります! ぜひやって見てください! 忘れた時に見返してくれたら幸いです!
慶應義塾大学理工学部 チェンパン
35
2
理系数学
理系数学カテゴリの画像
文系数学の勉強法について
慶應経済のものです。 自分も数学受験ですのでお答えさせていただきますね。 さていきなりですが、問題を解くときどのように解いていますか?もし、解く→答えを見る→採点する。これだけで終わっているなら伸びるわけがありません。『高校数学は暗記だ』などと言ってる人をたまに見かけますが、基本的に数学は理論です。解くだけではなく理解して初めて身につく力となる学問です。ですから解いて答えを見て採点した後に、じっくりと解説を読んでください。そしてじっくりと読んだ後、解説を見ずにもう一度問題を解いて、解説の解き方を再現できるようにしてください。この一手間を加えるだけでかなり理解度が変わってきます。 そんなのもうやってる!って場合は、焦らないでください。もしこのやり方がきちんと出来ているならば身につかないはずがありません。それはただ問題の練習量がちょっと足りないだけです。でも今の時期からやれば必ず間に合います。だからこそ焦らないでください。精神的な話になってしまいますが、自分はできる、と思い続けることはかなり重要です。もしすぐに点が伸びなくて悩んでしまっても、『きちんとしたやり方でやってるから大丈夫。もう少し頑張れば必ず点は伸びる』と自分を信じてください。焦りや不安は自己嫌悪につながり大変よろしくないです。是非自分を信じてあげてください。 最後に具体的なことになりますが、夏休みには一度自分の志望校の過去問を見ておくといいと思います。自分と志望校の距離が掴めますし、練習とは違った生の問題、本当の試験としての問題を見ておくことは今後の勉強のモチベーションに関しても学力向上に関しても重要です。また、志望校が早慶であるならば、日東駒専あたりの同じ学部、あるいは問題の出題範囲が似ている大学の過去問を解いて行くといいです。難易度が下がりますので志望校よりも簡単に解けるはずです。是非とも頑張ってください。 心から応援しています
慶應義塾大学経済学部 83pico83
18
2
文系数学
文系数学カテゴリの画像
数学の勉強の進め方について
受験で数学を使いたい場合、1A2Bで、基礎が不安な単元が一つでもある場合、数学が足を引っ張りかねません。なので、まず、学校の定期テストレベルの問題が安定して解けないような単元がある場合、その穴を埋めるのが最優先事項な気がします。すくなくとも、私が受験生のときはそのようにしていました。全ての単元を得意にする必要はない気もするので、とにかく、どんな単元が出されても、基礎的なものであれば解ける状態を作ることが大事だと思います。 数学は、反復して学習することがとても大切です。特に、自分が苦手としていると感じている単元ならば尚更です。しばらくすると解けなるなるということですが、時間が経てば人間は忘れるものです。それは理解力がないのではなく、単に問題演習不足です。とにかく、苦手意識がある単元は、反復学習が大事です。
名古屋大学文学部 Y.A
0
1
文系数学
文系数学カテゴリの画像
数学が伸びない
はじめまして! 私が高校生の時にやっていた方法を書こうと思います! (公式は覚えていることが前提です) 1.問題だけを読んで、何も見ずに解いてみる 2.解けなかったら、解答のヒントを読む(ヒントがある場合)(記憶のインプット) 3.ヒントを元にして解いてみる→解けたら問題に丸印をつけておく 4.解けなかった場合、解答をよく読む→バツ印をつけておく(記憶のインプット) 5.解答のポイントと思う部分に線を引いて覚える(記憶のインプット) 6.すぐに、その問題の解答を見ずに解く(記憶のアウトプット) 7.数日後に、印をつけた問題に対してもう一度1~6を試してみる。1で解けたら印を消す。3で解けたらバツ印は丸印に書き換える。(記憶のアウトプット) 8.全ての印が無くなるまで1~7を繰り返す 数学は暗記科目ではありませんが、記憶力は使います。 記憶の定着には、インプットとアウトプットの両方をやることが大切です。 もちろん解答の丸暗記では、その問題専用の記憶となってしまい、応用ができません。(そんなに記憶力があるならそのメモリには英単語等を入れましょう!)(もちろん、公式は覚えましょう!) 数学で記憶力を使う場面は5の解答のポイントを覚えることです。 大切な部分をかいつまんで覚える方が覚える量も減るし、ポイントの組み合わせ方次第でほかの問題や応用問題にも活用できます! 人によってポイントと思う部分は違いますが、例えば絶対値と整数が等式で結ばれた方程式を解く際は、両辺を二乗して解きますね。この場合、「絶対値の計算では二乗する」ことがポイントです。 数学は長期戦なので、なかなか成長が目に見えずらいです。ですが、やった分は必ずいつか結果になるので諦めずにがんばりましょう!! 応援しています。
大阪大学工学部 合格GO
8
2
理系数学
理系数学カテゴリの画像
共通テスト同日模試
私も数学が苦手な人間でした。 そういう意味でこんな問題解けるようになるのか?と不安になった記憶があります。 数学や英語は成績が上がるまでに時間がかかる科目です。 基礎を積み上げて盤石にし、その上で標準レベルの問題(模試や入試等でよく出てくる典型的な問題)を解けるようにしていく必要があります。その訓練がある程度形になると、おそらく数学への苦手意識は解消されると思いますので、このレベルまで持ち上げられるように努力しましょう。 基礎を固めることに置いては、まずは教科書の例題を参考にどういった動きをしているのか、何をしようとしているのかを1つ1つ丁寧に追って理解します。 その上で、同じレベルの練習問題などを、上で理解したことを参考にしながら自力で答えに持っていくことができるか試します。教科書の練習問題や参考書に載っているようなその単元におけるごく簡単な問題をまずはスラスラ解けるように何度も繰り返してください。 その後、上で理解した知識を駆使した基礎を少し発展させたような問題を解く練習をします。 ここまでできて、基礎は完成です。 続いて、標準問題です。 入試までに発展レベルを解けるようにならなくては!と焦る受験生は多くいますが、本質は違います。 案外、この標準レベルの問題がきちんと解けるか否かで変わってくるものです。 いろいろな参考書や模試、本番の入試でよく見る問題が多いために軽視されがちですが、ここをきちんと満点もらえる答案を作れるか、これが合否を左右するといっても過言ではありません。 では、それはどの問題か?と聞かれると表現しにくいですがおそらく参考書では「標準」とか「★★(発展問題が★★★だった場合)」みたいな表現をされていると思います。教科書で言えば、章末問題の後半にあるような問題です。 このレベルの問題は、与えられた条件から基礎で理解した知識を使って、分かっていること(条件から言えること)を書き出します。 その上で、基礎で演習したような動きを繰り返して解いたり、他の単元の知識を使って解法を編み出していくことになります。 はじめは動けないと思うので、解答を見ながらでも構いません。問題から与えられた条件をどのように読み取り、それをどのように噛み砕いていくのか、その動きを追って何をしているのかを理解してください。 その理解が済んだら、自分できちんとノートに記述して実際に答案を作ってみてください。 この繰り返しです。 数学が苦手ですと、勉強するのも嫌になってくると思います。それでも、諦めずに1つ1つ丁寧にこなしていってくださいね!
東北大学教育学部 まー
9
2
文系数学
文系数学カテゴリの画像
数学の正しい勉強法
まずはどの科目にも言えることですが、基礎をしっかり理解し、解けるようにしてください。 基本問題を解き、わからないところは教科書や参考書に立ち返り復習する癖をつけましょう。 そして解法パターンを身につければ、応用問題も怖くありません。 数学はとにかく問題を解けばいい、と思っていませんか? 実はわたしもそう思っていました。 なので理論もわからず、とにかく問題集(私は青チャートを使っていました)を解き、間違える日々。 しかしこの勉強法は間違っている、と浪人してからやっと気付きました。 数学には定型パターンがあります。 高校数学を難しく感じるのは、そのパターンが非常に多いためです。 なので、まずはお決まりのパターンをしっかり覚えるようにしてください。 こういう問題がきたら、この公式だな、ってすぐに思いつくレベルまでもっていくのです。 以下、具体的な方法です。 私は青チャートを使っていたので、青チャートをイメージしてお答えしますが、ご自身の使っている問題集に置き換えて参考にしてみてください。 1.まずは一通り例題を解き、公式の使いどころを覚える。(基本問題) →数学には解法パターンがあります。こういう問題が来たら、こういう方法で解く、というのが反射的にわかる、身につく、というところまでもっていきます。 この時、公式がわからない、理解できないときは教科書を開いて理解するようにしましょう。 2.例題の下にある問題を解く(標準問題) →わからなくてもすぐに答えなどみずに、10分は考えるようにしましょう。この時色々な公式や解法が頭に浮かべば、知識は身についている証拠です。 逆に標準問題で手も足も出ないなら、教科書に立ち返りましょう。 ここまでできれば、定期テストや模試である程度の得点は見込めます。(青チャートなら国立大やマーチレベル) 3.章末問題を解く(応用、発展問題) →数学を得点源にしたい人、難関国立大や早慶を狙う人は最終的に解けるようにしましょう。 このレベルだとさまざまな公式を合わせて使う、複合タイプの問題になります。 この問題をやるときは、「自分がどこまでわかっていて、どこからがわからないのか」をしっかり把握するようにしてください。復習するときはできないところの例題などを見返し、できるようにしましょう。 これが解ければ模試の大問もほぼ完投できます。 このように、大事なことはとにかく、 理論を理解する ことです。 闇雲にやって量をこなすのではなく、丁寧に時間をかけて勉強してください。
名古屋大学工学部 けろちゃん
211
26
理系数学
理系数学カテゴリの画像
数学 勉強法
解法暗記はあまり賢い方法とは思いません。解法の暗記では、数字が変わっただけの問題なら解けるようになるかもしれませんが、基本原理が同じだけど全然違って見える問題には基本的に対処できません。そうなら、全てのパターンを覚えればいいとなりそうですが、全てのパターンを覚えている間に本質を学んでいる人は数学の勉強でさらに高みに、なんなら他の科目の勉強へと行ってしまいます。 数学というのは頭を使いながら手を動かして学ぶ科目なので、そもそも暗記というものに適してないのです。 そもそも、試験問題を作る難関大学の先生方は暗記だけで解けるような問題は嫌います。基礎的な考え方を理解した前提で一捻りや二捻りを加えてきます。 ですので、個人的には本質を理解して多くのタイプの問題に立ち向かって考える力を養うことをおススメします。今までの勉強が完全に無駄になる訳ではありません。理解して問題を解いていく途中で、今まで覚えてきた解法のどこが上手いやり方をしていたのかがわかり、また、怪しい方向へ思考が進むことも止めてくれるのでたまに助かることもあるかと思います。
慶應義塾大学理工学部 陸の王者(自称)
18
0
文系数学
文系数学カテゴリの画像